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avtorTa sayuradRebod!

redaqciaSi statiis warmodgenisas saWiroa davicvaT Semdegi wesebi:

 1. statia unda warmoadginoT 2 calad,  rusul an inglisur enebze, dabeWdili 
standartuli furclis 1 gverdze,  3 sm siganis marcxena velisa da striqonebs 
Soris 1,5 intervalis dacviT. gamoyenebuli kompiuteruli Srifti rusul da ing-
lisurenovan teqstebSi - Times New Roman (Кириллица), xolo qarTulenovan teqstSi 
saWiroa gamoviyenoT AcadNusx. Sriftis zoma – 12. statias Tan unda axldes CD 
statiiT. 
 2. statiis moculoba ar unda Seadgendes 10 gverdze naklebs da 20 gverdze mets 
literaturis siis da reziumeebis (inglisur, rusul da qarTul enebze) CaTvliT.
 3. statiaSi saWiroa gaSuqdes: sakiTxis aqtualoba; kvlevis mizani; sakvlevi 
masala da gamoyenebuli meTodebi; miRebuli Sedegebi da maTi gansja. eqsperimen-
tuli xasiaTis statiebis warmodgenisas avtorebma unda miuTiTon saeqsperimento 
cxovelebis saxeoba da raodenoba; gautkivarebisa da daZinebis meTodebi (mwvave 
cdebis pirobebSi).
 4. statias Tan unda axldes reziume inglisur, rusul da qarTul enebze 
aranakleb naxevari gverdis moculobisa (saTauris, avtorebis, dawesebulebis 
miTiTebiT da unda Seicavdes Semdeg ganyofilebebs: mizani, masala da meTodebi, 
Sedegebi da daskvnebi; teqstualuri nawili ar unda iyos 15 striqonze naklebi) 
da sakvanZo sityvebis CamonaTvali (key words).
 5. cxrilebi saWiroa warmoadginoT nabeWdi saxiT. yvela cifruli, Sema-
jamebeli da procentuli monacemebi unda Seesabamebodes teqstSi moyvanils. 
 6. fotosuraTebi unda iyos kontrastuli; suraTebi, naxazebi, diagramebi 
- dasaTaurebuli, danomrili da saTanado adgilas Casmuli. rentgenogramebis 
fotoaslebi warmoadgineT pozitiuri gamosaxulebiT tiff formatSi. mikrofoto-
suraTebis warwerebSi saWiroa miuTiToT okularis an obieqtivis saSualebiT 
gadidebis xarisxi, anaTalebis SeRebvis an impregnaciis meTodi da aRniSnoT su-
raTis zeda da qveda nawilebi.
 7. samamulo avtorebis gvarebi statiaSi aRiniSneba inicialebis TandarTviT, 
ucxourisa – ucxouri transkripciiT.
 8. statias Tan unda axldes avtoris mier gamoyenebuli samamulo da ucxo-
uri Sromebis bibliografiuli sia (bolo 5-8 wlis siRrmiT). anbanuri wyobiT 
warmodgenil bibliografiul siaSi miuTiTeT jer samamulo, Semdeg ucxoeli 
avtorebi (gvari, inicialebi, statiis saTauri, Jurnalis dasaxeleba, gamocemis 
adgili, weli, Jurnalis #, pirveli da bolo gverdebi). monografiis SemTxvevaSi 
miuTiTeT gamocemis weli, adgili da gverdebis saerTo raodenoba. teqstSi 
kvadratul fCxilebSi unda miuTiToT avtoris Sesabamisi N literaturis siis 
mixedviT. mizanSewonilia, rom citirebuli wyaroebis umetesi nawili iyos 5-6 
wlis siRrmis.
 9. statias Tan unda axldes: a) dawesebulebis an samecniero xelmZRvane-
lis wardgineba, damowmebuli xelmoweriTa da beWdiT; b) dargis specialistis 
damowmebuli recenzia, romelSic miTiTebuli iqneba sakiTxis aqtualoba, masalis 
sakmaoba, meTodis sandooba, Sedegebis samecniero-praqtikuli mniSvneloba.
 10. statiis bolos saWiroa yvela avtoris xelmowera, romelTa raodenoba 
ar unda aRematebodes 5-s.
 11. redaqcia itovebs uflebas Seasworos statia. teqstze muSaoba da Se-
jereba xdeba saavtoro originalis mixedviT.
 12. dauSvebelia redaqciaSi iseTi statiis wardgena, romelic dasabeWdad 
wardgenili iyo sxva redaqciaSi an gamoqveynebuli iyo sxva gamocemebSi.

aRniSnuli wesebis darRvevis SemTxvevaSi statiebi ar ganixileba.
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Abstract.
Sodium-glucose cotransporter 2 (SGLT2) inhibitors were 

originally developed as glucose-lowering agents for patients 
with type 2 diabetes mellitus (T2DM). However, a growing 
body of robust clinical evidence has demonstrated their 
profound cardioprotective and nephroprotective effects that 
extend beyond glycemic control. This review summarizes the 
current understanding of the mechanisms underlying these 
benefits and the clinical implications across a wide range of 
patient populations. We discuss landmark cardiovascular and 
renal outcome trials, evaluate the physiological and molecular 
mechanisms, including hemodynamic modulation, anti-
inflammatory and antifibrotic effects, and improvements in 
myocardial and renal energetics, and assess the role of SGLT2 
inhibitors in heart failure with reduced and preserved ejection 
fraction, as well as in chronic kidney disease with and without 
diabetes. The translation of these findings into clinical guidelines 
has reshaped therapeutic strategies in both endocrinology and 
cardiology, underscoring the importance of SGLT2 inhibitors 
as a cornerstone in cardiorenal protection.

Key words. SGLT2 inhibitors, type 2 diabetes, heart failure, 
chronic kidney disease, cardioprotection, nephroprotection, 
dapagliflozin, empagliflozin, canagliflozin, cardiovascular 
outcomes.
Introduction.

Type 2 diabetes mellitus (T2DM) has evolved into one of 
the most prevalent and costly chronic conditions worldwide. 
According to the International Diabetes Federation, over 537 
million adults globally were living with diabetes in 2021, 
and this number is projected to exceed 783 million by 2045, 
driven largely by demographic shifts, urbanization, sedentary 
lifestyles, and nutritional transitions [1]. T2DM contributes 
significantly to premature mortality and health system burden, 
not only through direct glycemic effects but primarily through 
its systemic complications.

Although hyperglycemia has historically been the primary 
therapeutic target, it is now well-established that normalization 
of blood glucose alone does not eliminate the elevated risks 
of cardiovascular (CV) events, heart failure (HF), and chronic 
kidney disease (CKD) in patients with T2DM [2,3]. Landmark 
trials such as ACCORD, ADVANCE, and VADT demonstrated 
that intensive glycemic control modestly reduces the risk 
of microvascular complications but has little to no effect on 
macrovascular outcomes and may even increase mortality in 
certain subgroups [4-6]. These findings underscored the need 
for pharmacological interventions capable of modifying disease 

progression at the cardiorenal level, independent of glucose-
lowering efficacy.

The introduction of sodium-glucose cotransporter 2 inhibitors 
(SGLT2i) represented a pivotal shift in the therapeutic landscape. 
Originally developed as insulin-independent antihyperglycemic 
agents, SGLT2i act by inhibiting the SGLT2 protein in the renal 
proximal tubule, thereby promoting glycosuria and natriuresis. 
This mechanism results in moderate reductions in plasma 
glucose, body weight, and systolic blood pressure, along with 
mild diuresis [7]. However, emerging evidence from large-scale 
cardiovascular outcome trials (CVOTs) rapidly redefined their 
clinical role.

The EMPA-REG OUTCOME trial (empagliflozin), CANVAS 
Program (canagliflozin), DECLARE-TIMI 58 (dapagliflozin), 
and VERTIS-CV (ertugliflozin) collectively established that 
SGLT2i not only reduce hospitalization for heart failure (HHF) 
but also significantly lower the risk of cardiovascular death, 
particularly in patients with pre-existing ASCVD or multiple 
risk factors [8-11]. Furthermore, studies such as DAPA-HF and 
EMPEROR-Reduced demonstrated that these benefits extend 
to patients without diabetes, confirming SGLT2 inhibition as 
a viable strategy for heart failure management independent of 
glycemic status [12,13].

The renoprotective properties of SGLT2 inhibitors have also 
garnered considerable attention. Trials such as CREDENCE 
(canagliflozin) and DAPA-CKD (dapagliflozin) reported 
marked reductions in albuminuria, preservation of estimated 
glomerular filtration rate (eGFR), and delayed progression 
to end-stage kidney disease (ESKD) among patients with 
CKD, including those without diabetes [14,15]. The EMPA-
KIDNEY trial further reinforced these outcomes, leading to the 
endorsement of SGLT2i by nephrology societies as cornerstone 
therapy for CKD [16].

The mechanisms underlying the cardiorenal protection offered 
by SGLT2 inhibitors are multifactorial and incompletely 
understood. Hemodynamic effects, including reductions in 
preload, afterload, and intraglomerular pressure, appear to 
play a key role, as do metabolic shifts such as increased ketone 
availability, improved myocardial energetics, and decreased 
tubular oxygen consumption [17,18]. Additionally, SGLT2i 
may exert anti-inflammatory and antifibrotic actions by 
downregulating pro-inflammatory cytokines (e.g., TNF-α, IL-6), 
reducing oxidative stress, and inhibiting NLRP3 inflammasome 
activation in cardiac and renal tissues [19,20].

Beyond these mechanisms, emerging data suggest potential 
benefits on endothelial function, sympathetic nervous 
system modulation, epicardial adipose tissue reduction, and 
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hematopoiesis via increased erythropoietin production [21-23]. 
Notably, these effects occur independently of glycemic control 
and are observed across diverse populations, reinforcing the 
concept of SGLT2 inhibitors as organ-protective agents rather 
than purely metabolic drugs.

The broad spectrum of efficacy and favorable safety profile 
have prompted updates in international clinical guidelines. 
The American Diabetes Association (ADA), European Society 
of Cardiology (ESC), kidney disease: Improving Global 
Outcomes (KDIGO), and American Heart Association (AHA) 
now endorse the use of SGLT2i as first-line or early adjunctive 
therapy in patients with established ASCVD, HF with reduced 
ejection fraction (HFrEF), or CKD – regardless of the presence 
of T2DM [24-27].

Given these transformative developments, the present 
review aims to provide an in-depth synthesis of the current 
evidence surrounding SGLT2 inhibitors. We critically examine 
their pharmacokinetic and pharmacodynamic properties, 
cardiovascular and renal outcome data, mechanisms of action, 
safety considerations, and positioning in current treatment 
algorithms. By integrating clinical trial findings with mechanistic 
insights, this article seeks to clarify the evolving role of SGLT2 
inhibitors across the cardio-renal-metabolic continuum and to 
highlight their implications for real-world practice.
Historical Background and Conceptual Evolution.

The clinical development of sodium-glucose cotransporter 2 
(SGLT2) inhibitors stems from decades of investigation into 
renal glucose handling. In healthy individuals, approximately 
180 grams of glucose are filtered daily by the glomeruli, with 
nearly complete reabsorption occurring in the proximal tubules. 
SGLT2 accounts for approximately 90% of this reabsorption, 
while SGLT1 handles the remainder in the more distal nephron 
segments [17]. This physiologic mechanism provided the 
rationale for targeting SGLT2 as a means to lower plasma 
glucose levels via enhanced urinary excretion.

The therapeutic concept was inspired by phlorizin, a natural 
compound isolated from the bark of apple trees in the 19th 
century, which was later found to inhibit both SGLT1 and 
SGLT2. Although phlorizin demonstrated glycosuric properties 
in animal studies, its clinical application was hindered by 
poor oral bioavailability and significant gastrointestinal side 
effects due to SGLT1 inhibition [17,21]. These limitations led 
to the development of more selective and orally bioavailable 
SGLT2 inhibitors in the early 2000s, including dapagliflozin, 
canagliflozin, and empagliflozin [24].

Initial phase 2 and 3 clinical trials of these agents demonstrated 
moderate reductions in glycated hemoglobin (HbA1c), along 
with favorable effects on body weight and systolic blood 
pressure [24]. Their insulin-independent mechanism of action 
and low risk of hypoglycemia distinguished SGLT2 inhibitors 
from other antidiabetic agents such as sulfonylureas or insulin 
[5,24]. However, following concerns about cardiovascular risks 
raised by the rosiglitazone experience, the U.S. FDA introduced 
a requirement in 2008 for all new glucose-lowering agents to 
demonstrate cardiovascular safety in large-scale trials [4].

The EMPA-REG OUTCOME trial, published in 2015, 
fundamentally altered the perception of SGLT2 inhibitors. In 

patients with type 2 diabetes and established atherosclerotic 
cardiovascular disease (ASCVD), empagliflozin significantly 
reduced cardiovascular death by 38%, hospitalization for heart 
failure (HHF) by 35%, and all-cause mortality by 32% [8]. 
These findings were both unexpected and unprecedented in the 
field of diabetology, as no previous glucose-lowering therapy 
had demonstrated such robust cardiovascular benefit.

Subsequent trials, including CANVAS (canagliflozin), 
DECLARE-TIMI 58 (dapagliflozin), and VERTIS-CV 
(ertugliflozin), confirmed consistent reductions in HF 
hospitalizations across broader patient populations, including 
individuals without prior cardiovascular events but with multiple 
risk factors [9-11]. Notably, DAPA-HF and EMPEROR-
Reduced extended these findings to patients with heart failure 
with reduced ejection fraction (HFrEF), irrespective of diabetes 
status, thus demonstrating the benefit of SGLT2 inhibition 
beyond glycemic control [12,13].

In nephrology, a similar transformation occurred. The 
CREDENCE trial showed that canagliflozin significantly 
reduced the risk of end-stage kidney disease (ESKD), doubling 
of serum creatinine, and renal or cardiovascular death in 
patients with type 2 diabetes and chronic kidney disease [14]. 
Shortly after, DAPA-CKD demonstrated that dapagliflozin 
improved renal and cardiovascular outcomes in patients with 
CKD, including those without diabetes [15]. These results 
were further reinforced by the EMPA-KIDNEY trial, which 
confirmed the renoprotective effect of empagliflozin across 
diverse populations [16].

Based on these consistent findings, international clinical 
guidelines rapidly evolved. The American Diabetes Association 
(ADA) and the European Society of Cardiology (ESC) began 
recommending SGLT2 inhibitors as foundational therapies 
in patients with T2DM and comorbid ASCVD, heart failure, 
or CKD [24,25]. The Kidney Disease: Improving Global 
Outcomes (KDIGO) guidelines and the American Heart 
Association/American College of Cardiology/Heart Failure 
Society of America (AHA/ACC/HFSA) guidelines further 
endorsed SGLT2 inhibitors in non-diabetic populations with 
HF and CKD [26,27].

This repositioning of SGLT2 inhibitors from purely 
antihyperglycemic agents to cardio-renal protective drugs 
represents a major paradigm shift in clinical pharmacology. The 
cardiovascular and renal benefits observed appear to be largely 
independent of their glucose-lowering effects and are instead 
attributed to mechanisms such as improved hemodynamics, 
reductions in intraglomerular pressure, modulation of 
neurohormonal activation, and attenuation of inflammation and 
fibrosis [18-20].

Moreover, the success of SGLT2 inhibitors has renewed 
scientific interest in the renal-cardiac-metabolic axis. This has 
led to the development of dual SGLT1/2 inhibitors such as 
sotagliflozin, which showed efficacy in the SOLOIST-WHF and 
SCORED trials for heart failure and chronic kidney disease in 
patients with diabetes [7]. These findings support the growing 
recognition of sodium-glucose co-transport modulation as a 
promising therapeutic avenue beyond glycemic control.

Understanding the trajectory of SGLT2 inhibitors – from 
physiologic curiosity and glycosuric agents to multifaceted 
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organ-protective therapies – is essential for contextualizing 
their role in contemporary and future clinical practice. The next 
section will examine the pharmacodynamics and mechanisms 
of action that underlie this expanded therapeutic potential.
Pharmacodynamics and Mechanisms of Action of SGLT2 
Inhibitors.

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) represent 
a novel class of antidiabetic drugs with multifaceted biological 
effects extending far beyond glycemic control. Their primary 
pharmacological action occurs in the proximal convoluted 
tubule, where they inhibit SGLT2 – a high-capacity, low-affinity 
transporter responsible for reabsorbing ~90% of filtered glucose 
[17,28]. Inhibition of this transporter induces glycosuria, 
leading to modest reductions in plasma glucose and glycated 
haemoglobin (HbA1c), typically in the range of 0.5–1.0% [29].

However, the profound cardiovascular and renal benefits 
observed in major outcome trials have made it clear that SGLT2 
inhibitors exert a wide array of non-glycaemic effects, involving 
hemodynamic modulation, metabolic remodelling, and anti-
inflammatory mechanisms. These pleiotropic actions have 
redefined their therapeutic role in modern medicine.

Hemodynamic Modulation: One of the earliest and most 
robust effects of SGLT2i is osmotic diuresis, which arises due to 
urinary glucose excretion. This promotes a shift in volume from 
interstitial to intravascular compartments, reducing preload 
and afterload without triggering sympathetic overactivation 
[30,31]. Unlike traditional diuretics, SGLT2i primarily reduce 
interstitial rather than intravascular volume, which may explain 
their favourable effects on congestion in heart failure [32].

Renal sodium excretion also leads to increased delivery 
of sodium to the macula densa, restoring tubuloglomerular 
feedback. This in turn reduces intraglomerular hypertension, 
one of the key drivers of nephron injury in both diabetic and 
non-diabetic chronic kidney disease (CKD) [33,34]. This effect 
underpins the renoprotective outcomes demonstrated in the 
CREDENCE, DAPA-CKD, and EMPA-KIDNEY trials [14-
16].

Metabolic and Energetic Effects: SGLT2 inhibition 
alters substrate utilization by promoting a mild ketogenic 
state. By decreasing insulin and increasing glucagon levels, 
SGLT2i enhance lipolysis and hepatic ketogenesis, resulting 
in higher circulating levels of ketone bodies – particularly 
β-hydroxybutyrate [35]. Ketones are more energy-efficient 
than glucose or fatty acids, improving cardiac mitochondrial 
energetics, especially in the failing myocardium [36].

Additionally, SGLT2 inhibitors:
1. Reduce body weight through caloric loss (~200–300 kcal/

day via glycosuria).
2. Lower uric acid levels via uricosuric effects.
3. Improve hepatic steatosis by enhancing fatty acid oxidation.
4. And reduce visceral adiposity, all of which contribute to 

improved cardiometabolic profiles [29,37,38].
Anti-inflammatory and Antifibrotic Mechanisms: A 

growing body of evidence highlights the anti-inflammatory 
properties of SGLT2 inhibitors. They reduce circulating levels 
of pro-inflammatory cytokines (e.g., IL-6, TNF-α) and suppress 
activity of the NLRP3 inflammasome, a key innate immune 

mediator implicated in cardiac and renal fibrosis [39,40]. 
Preclinical studies demonstrate reduced macrophage infiltration 
and fibrotic remodelling in both myocardial and renal tissues 
following SGLT2 inhibition [41].

These actions may directly contribute to the attenuation 
of left ventricular hypertrophy, interstitial fibrosis, and 
glomerulosclerosis, which are central to the progression of heart 
failure and CKD [42].

Neurohormonal and Hematologic Effects: SGLT2 inhibitors 
have been shown to modulate neurohormonal activation, 
particularly by reducing plasma norepinephrine levels, 
suggesting sympathetic downregulation [43]. This may explain 
improved heart rate variability and reductions in arrhythmic 
burden observed in clinical practice [44].

Another intriguing effect is stimulation of erythropoiesis via 
increased erythropoietin production, leading to modest rises in 
hematocrit and hemoglobin [21,45]. This may enhance oxygen 
delivery and tissue perfusion, further supporting cardiac and 
renal function in patients with HF or anemia of chronic disease.
Additional Mechanistic Pathways.

Further proposed mechanisms include:
1. Improved endothelial function via increased nitric oxide 

bioavailability and reduced oxidative stress [46].
2. Reduction in epicardial adipose tissue, which serves as a 

source of local pro-inflammatory mediators affecting cardiac 
contractility and stiffness [47].

3. And enhanced autophagy and mitochondrial biogenesis, 
especially under conditions of metabolic stress [48].

These diverse effects underscore the systemic impact of 
SGLT2 inhibition and its potential applications across a broad 
spectrum of pathologies.

Thus, while SGLT2 inhibitors were initially developed as 
glucose-lowering agents, their true therapeutic potential lies 
in their multi-organ, multi-pathway modulation, which has 
expanded their indications into cardiology, nephrology, and 
beyond.
Cardiovascular Outcomes of SGLT2 Inhibitors:

SGLT2 inhibitors have redefined cardiovascular risk 
management in patients with type 2 diabetes mellitus (T2DM) 
and, more recently, in those without diabetes. Initially developed 
as glucose-lowering agents, these drugs demonstrated a 
surprising and consistent ability to reduce cardiovascular 
(CV) events, particularly hospitalization for heart failure 
(HHF), prompting rapid expansion of their indications across 
cardiometabolic populations.

Landmark Cardiovascular Outcome Trials in Diabetes: 
The pivotal EMPA-REG OUTCOME trial (empagliflozin) 
demonstrated a 38% relative risk reduction in CV death, 35% 
reduction in HHF, and 32% reduction in all-cause mortality 
in patients with T2DM and established atherosclerotic 
cardiovascular disease (ASCVD) [8]. These were the first 
such results ever reported for a glucose-lowering agent and 
represented a paradigm shift in diabetes care.

Subsequent trials provided additional evidence:
1. CANVAS Program (canagliflozin): 14% reduction in 

major adverse cardiovascular events (MACE); notable renal 
protection; signal for increased amputation risk [9].
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2. DECLARE–TIMI 58 (dapagliflozin): non-significant 
reduction in MACE, but a 27% reduction in HHF, which was 
consistent across subgroups regardless of ASCVD status [10].

3. VERTIS-CV (ertugliflozin): demonstrated non-inferiority 
to placebo for MACE but confirmed benefit in reducing HHF 
[11].

Across these trials, reduction in HHF emerged as a consistent 
and class-wide effect, regardless of baseline cardiovascular 
history.
Heart Failure Trials in Non-Diabetic Populations.

The scope of benefit expanded further with trials enrolling 
patients with heart failure but without diabetes:

1. DAPA-HF (dapagliflozin): among patients with heart failure 
with reduced ejection fraction (HFrEF), dapagliflozin reduced 
the composite endpoint of CV death or worsening HF by 26%, 
with similar benefit in both diabetic and non-diabetic subgroups 
[12].

2. EMPEROR-Reduced (empagliflozin): demonstrated a 25% 
reduction in the same composite, along with slower eGFR 
decline [13].

These results firmly positioned SGLT2 inhibitors alongside 
ACE inhibitors, beta-blockers, and mineralocorticoid receptor 
antagonists as foundational therapies in HFrEF.
Even more striking were the findings from:

1. EMPEROR-Preserved (empagliflozin), which showed a 
21% relative risk reduction in the composite of CV death or 
HF hospitalization in patients with heart failure with preserved 
ejection fraction (HFpEF) [49].

2. DELIVER (dapagliflozin), which confirmed this benefit in 
a similar population, including those with mildly reduced EF 
[50].

Together, these trials closed a long-standing therapeutic gap in 
HFpEF, a condition with historically limited treatment options.

A meta-analysis combining EMPEROR-Preserved and 
DELIVER showed a 22% reduction in HHF, consistent across 
age, sex, and ejection fraction subgroups, affirming the class 
effect in HFpEF [51].

Meta-Analyses and Broader Implications. Multiple 
comprehensive meta-analyses have solidified these observations:

1. A 2022 JACC meta-analysis of over 90,000 patients 
confirmed that SGLT2 inhibitors reduce HHF by 28%, CV 
death by 14%, and all-cause mortality by 13%, across diverse 
populations [52].

2. The benefit in HFpEF is now considered statistically robust 
and clinically meaningful, even if effects on CV mortality 
remain more modest [51,52].

In addition, these findings support the integration of SGLT2 
inhibitors into multidisciplinary heart failure care – not merely 
as adjuncts, but as disease-modifying agents.

Reflecting this, recent guidelines from the AHA/ACC/HFSA 
(2022), ESC (2023), and ADA (2024) now recommend SGLT2 
inhibitors as class I agents in HFrEF, and class IIa in HFpEF, 
regardless of diabetes status [24-27].

Mechanistic Basis for Cardiovascular Benefits. While the 
glucose-lowering effects of SGLT2 inhibitors are modest, the 
cardioprotective benefits appear to derive from pleiotropic 
mechanisms, including:

1. Hemodynamic modulation: reduction of preload and 
afterload via osmotic diuresis and natriuresis [30].

2. Myocardial energetic shift: increased ketone body utilization 
improves myocardial ATP generation and oxygen efficiency 
[35,36].

3. Anti-fibrotic and anti-inflammatory effects: attenuation of 
NLRP3 inflammasome activation and macrophage infiltration 
limits myocardial and vascular fibrosis [39-41,53].

4. Neurohormonal effects: dampening of sympathetic tone 
and increased erythropoietin-mediated hematopoiesis improve 
oxygen delivery [21,43,45].

5. Endothelial and mitochondrial protection, through reduction 
in oxidative stress and improved nitric oxide bioavailability 
[46,48].

SGLT2 inhibitors have decisively moved from metabolic 
adjuncts to core cardiovascular therapeutics. Their ability to 
reduce heart failure hospitalizations, slow renal function decline, 
and improve survival in both HFrEF and HFpEF, regardless of 
glycemic status, positions them as one of the most significant 
pharmacologic advancements in contemporary cardiovascular 
medicine.
Renal Outcomes of SGLT2 Inhibitors.

Beyond their cardiovascular benefits, SGLT2 inhibitors have 
demonstrated remarkable nephroprotective effects in both 
diabetic and non-diabetic populations. These effects, originally 
observed as secondary outcomes in cardiovascular outcome 
trials, have since been confirmed in dedicated renal studies 
and have reshaped the management of chronic kidney disease 
(CKD).

Early Signals from Cardiovascular Trials: In the EMPA-
REG OUTCOME trial, empagliflozin significantly slowed the 
progression of kidney disease, as evidenced by a 39% relative 
risk reduction in incident or worsening nephropathy [8]. 
Similarly, in the CANVAS Program, canagliflozin reduced the 
risk of sustained albuminuria progression and improved renal 
composite endpoints [9]. The DECLARE–TIMI 58 trial also 
reported a 47% reduction in a renal composite outcome with 
dapagliflozin [10].

These consistent renal findings across CVOTs suggested a 
class effect and motivated the initiation of trials specifically 
designed to assess renal outcomes.

Dedicated Renal Outcome Trials: The CREDENCE trial 
was the first renal outcome trial to prospectively evaluate 
SGLT2 inhibition in patients with type 2 diabetes and CKD. 
Canagliflozin reduced the risk of the composite endpoint of end-
stage kidney disease (ESKD), doubling of serum creatinine, or 
renal/cardiovascular death by 30% compared to placebo [14].

Following this, the DAPA-CKD trial extended the benefit to 
patients with and without diabetes. Dapagliflozin reduced the 
risk of the primary composite outcome (≥50% eGFR decline, 
ESKD, or renal/CV death) by 39%, with consistent benefit in 
both diabetic and non-diabetic subgroups [15].

More recently, the EMPA-KIDNEY trial evaluated 
empagliflozin in a broader CKD population (including non-
diabetics with lower eGFR and albuminuria) and demonstrated 
a 28% relative risk reduction in the primary outcome [16].

Collectively, these trials confirmed that SGLT2 inhibitors 



172

ability to slow eGFR decline, reduce progression to ESKD, and 
decrease cardiovascular risk has established SGLT2 inhibitors 
as essential agents in the care of patients with chronic kidney 
disease – irrespective of diabetes status.
Safety and Adverse Effects of SGLT2 Inhibitors.

While SGLT2 inhibitors are generally well tolerated and 
possess an excellent benefit-risk profile, they are associated 
with several class-specific adverse events. Awareness of these 
effects is crucial for appropriate patient selection, counselling, 
and monitoring.

Genitourinary Infections: The most frequently reported 
adverse effects are genital mycotic infections, particularly 
in women. The mechanism involves glucosuria-induced 
alterations in the urogenital microbiome and pH, which favor 
Candida overgrowth [60].

The incidence of vulvovaginal candidiasis ranges from 4-10% 
in clinical trials, and may be higher in real-world settings 
[60,61]. In uncircumcised men, balanitis is more common. 
These infections are typically mild to moderate, respond to 
topical or oral antifungals, and rarely require discontinuation.

Urinary tract infections (UTIs) may also occur but were not 
significantly increased in most meta-analyses [62].

Euglycemic Diabetic Ketoacidosis (euDKA): A rare but 
serious adverse event is euglycemic diabetic ketoacidosis, 
particularly in:

1. Patients with insulin deficiency (e.g., T1DM or latent 
autoimmune diabetes).

2. Prolonged fasting.
3. Surgery or severe illness [63].
Clinical features include nausea, abdominal pain, and high 

anion gap acidosis with near-normal glucose levels. Diagnosis 
can be delayed due to the absence of marked hyperglycemia.

1. Incidence is low (<0.1–0.2% in most studies) but higher in 
off-label use for type 1 diabetes [64].

2. Patient education, temporary discontinuation during acute 
illness ("sick-day rules"), and avoidance in at-risk populations 
are critical for prevention.

Volume Depletion and Hypotension: Due to their mild 
diuretic effect, SGLT2 inhibitors can cause:

1. Orthostatic hypotension,
2. Dizziness,
3. Volume depletion, especially in elderly or those on loop 

diuretics [29,30,65].
Although generally well tolerated, volume-related adverse 

events may require:
1. Dose reduction of concomitant antihypertensives,
2. Increased fluid intake in selected patients,
3. Monitoring blood pressure in frail individuals or those with 

autonomic dysfunction.
Acute Kidney Injury (AKI): Initial concerns about AKI 

have been largely mitigated by real-world evidence and pooled 
analyses from major trials:

1. AKI is not more frequent with SGLT2 inhibitors compared 
to placebo [59,66].

2. In fact, some studies show reduced incidence of AKI, likely 
due to improved renal hemodynamics and reduced hypoxic 
stress [66].

are nephroprotective regardless of diabetes status, prompting 
guideline bodies to recommend their use in CKD management.
Pathophysiologic Basis for Renoprotection.

The renal benefits of SGLT2 inhibitors are attributed to several 
interrelated mechanisms:

1. Reduction of intraglomerular hypertension via restoration of 
tubuloglomerular feedback through increased sodium delivery 
to the macula densa [33,34,54].

2. Mitigation of glomerular hyperfiltration, which slows 
nephron damage over time.

3. Attenuation of renal hypoxia and oxidative stress, 
reducing inflammation and fibrosis in tubular and interstitial 
compartments [55,56].

4. Reduction in albuminuria, reflecting improved glomerular 
barrier function [15,16].

5. Slower decline in eGFR with a characteristic initial “dip” 
followed by long-term preservation – a pattern now recognized 
as beneficial [31,54].

Additionally, SGLT2i lower uric acid levels, reduce renal 
tubular workload, and may preserve mitochondrial function, 
enhancing cellular resilience [37,55].
Clinical Implications and Guidelines.

On the basis of robust clinical trial evidence, multiple 
international societies have now endorsed the use of SGLT2 
inhibitors in CKD:

• KDIGO 2022 guidelines recommend SGLT2i as first-line 
therapy in patients with T2DM and CKD with eGFR ≥20 mL/
min/1.73m², regardless of glycemic control [26].

• ADA Standards of Care and ESC guidelines also highlight 
their use for slowing CKD progression and reducing CV risk in 
patients with albuminuric CKD [24,25].

• Real-world data continue to confirm the safety and 
effectiveness of SGLT2 inhibitors in routine nephrology 
practice [57].

Their renal benefits are now considered independent of 
HbA1c reduction, positioning SGLT2 inhibitors as first-in-class 
nephroprotective agents rather than merely antidiabetic drugs.
Expanding Indications and Unanswered Questions.

Ongoing trials are exploring the potential of SGLT2 inhibitors 
in:

1. Glomerulonephritides (e.g., IgA nephropathy).
2. Polycystic kidney disease.
3. And even acute kidney injury prevention in surgical or 

septic contexts [58].
While the initial eGFR drop remains a source of concern for 

some clinicians, long-term follow-up has consistently shown 
sustained benefit and low rates of adverse renal events, including 
hyperkalemia and acute kidney injury [31,59].

Still, open questions remain regarding:
1. Optimal timing of initiation in early-stage CKD.
2. Use in combination with finerenone and other renin-

angiotensin system blockers.
3. And efficacy in non-proteinuric renal phenotypes.
The consistent, substantial, and durable renal benefits of 

SGLT2 inhibitors mark one of the most important therapeutic 
advancements in nephrology over the past two decades. Their 
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The initial dip in eGFR, typically observed within 2-4 weeks, 
reflects hemodynamic changes and is not indicative of renal 
damage [54].

Lower Limb Amputation and Bone Fracture Risk: The 
CANVAS Program raised concern about increased amputation 
risk (primarily at the toe or midfoot) with canagliflozin [9], 
leading to an FDA boxed warning (since removed in 2020).

1. No significant increase in amputations has been observed 
with other agents (dapagliflozin, empagliflozin) or in subsequent 
trials [67].

2. Risk appears to be agent-specific and patient-dependent, 
particularly in those with active ulcers, peripheral arterial 
disease, or previous amputation.

Similarly, increased fracture risk was initially noted with 
canagliflozin but not replicated in other large trials.
Other Considerations:

• Fournier’s gangrene (necrotizing fasciitis of the perineum) 
has been reported in rare cases, mostly in patients with multiple 
risk factors. While causality is unclear, patients should be 
advised to seek immediate medical attention for genital pain or 
swelling [63].

• Lipid profile: slight increase in LDL-C has been observed 
but without significant impact on cardiovascular outcomes [29].

• Pregnancy and breastfeeding: SGLT2 inhibitors are 
contraindicated due to lack of safety data and potential risks 
during renal development in the fetus [60].

Overall, SGLT2 inhibitors exhibit a favorable safety profile, 
with most adverse events being mild, preventable, or manageable. 
When used appropriately and with adequate patient education, 
the risk-benefit ratio of these agents is overwhelmingly positive, 
particularly given their ability to reduce mortality and organ 
failure across multiple systems.
Clinical Use and Recommendations: Who, When, and How?

Based on robust evidence from multiple large-scale trials, 
SGLT2 inhibitors have earned a place in the standard of care for 
patients across a spectrum of diseases, including type 2 diabetes 
(T2DM), heart failure (HF), and chronic kidney disease (CKD). 
International guidelines now emphasize early initiation of these 
agents – often regardless of glycemic status.
Patient Populations That Benefit:

1. Patients with T2DM and Atherosclerotic Cardiovascular 
Disease (ASCVD).

SGLT2 inhibitors are recommended in patients with 
established ASCVD to reduce cardiovascular events and 
mortality, independent of baseline HbA1c or metformin use 
[24,25,68].

2. Patients with Heart Failure (HFrEF and HFpEF).
As supported by DAPA-HF, EMPEROR-Reduced, DELIVER, 

and EMPEROR-Preserved, SGLT2 inhibitors improve 
outcomes in:

• HFrEF: Class I indication, with or without diabetes [12,13].
• HFpEF: Class IIa (ESC, AHA/ACC/HFSA) [49,50].
3. Patients with CKD.
Indicated for patients with:
• eGFR ≥20 mL/min/1.73 m², especially if albuminuria ≥30 

mg/g.

• Diabetic and non-diabetic CKD [15,16,26,69].
Contraindications and Cautions.

Contraindications include:
1. Type 1 diabetes (except in research settings due to DKA 

risk).
2. Pregnancy and lactation.
3. Active DKA or serious illness with reduced oral intake 

[64,70].
Caution is advised in:
1. Frail elderly with orthostatic hypotension.
2. Those on loop diuretics.
3. Patients with recurrent genital infections.
Temporary interruption is recommended during:
1. Acute illness.
2. Surgery.
3. Volume depletion (to prevent AKI or ketoacidosis) [64,70].

Initiation and Monitoring Strategy:
Before Starting Ongoing Monitoring
Check eGFR (>20–25) eGFR every 3–6 months

Screen for mycotic infections Monitor volume status and blood 
pressure

Educate on “sick day” rules Watch for DKA symptoms 
(especially if low-carb)

Doses are fixed per agent (e.g., empagliflozin 10 mg, 
dapagliflozin 10 mg daily), with no titration needed. Most can be 
used without dose reduction unless eGFR falls below threshold.
Combining with Other Medications:

1. Metformin: fully compatible; often used together in initial 
therapy [24].

2. ACEi/ARBs: synergistic for renal protection.
3. GLP-1 RAs: complementary; combination reduces both 

ASCVD and progression of CKD [71].
4. Diuretics: monitor volume status – may need to reduce loop 

dose.
5. Mineralocorticoid receptor antagonists (MRAs): 

combination with finerenone is being studied; early data 
promising [72].

Algorithmic Implementation in Practice: Multiple 
guidelines provide stepwise algorithms. In summary:

1. For T2DM + ASCVD / HF / CKD → Initiate SGLT2i as 
early as possible.

2. For HF (regardless of diabetes) → Part of quadruple therapy 
(with BB, ACEi/ARNI, MRA) [27].

3. For CKD → Initiate when eGFR ≥20 and albuminuria 
present; continue until dialysis or transplant considered.

Real-world implementation remains suboptimal, with <50% 
of eligible patients receiving therapy due to therapeutic inertia, 
cost, or lack of awareness [73].

SGLT2 inhibitors are no longer just glucose-lowering drugs 
– they are disease-modifying agents that improve survival, 
delay organ failure, and reduce hospitalizations. Their timely 
integration into clinical practice, across disciplines, represents 
a critical shift toward organ-protective pharmacotherapy in 
modern medicine.
Future Directions and Conclusions.

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have 
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revolutionized the treatment of cardiovascular and renal 
diseases, particularly in patients with type 2 diabetes. However, 
while their benefits are now well-established in heart failure, 
chronic kidney disease, and diabetes management, several key 
areas remain for future investigation. Ongoing studies will 
likely expand the use of SGLT2 inhibitors to broader patient 
populations and clarify their full range of therapeutic potentials.
Expanding Indications: Beyond Diabetes and Heart Failure.

SGLT2 inhibitors are currently prescribed primarily for patients 
with type 2 diabetes, heart failure, and chronic kidney disease. 
However, several other indications are under investigation:

• Type 1 Diabetes (T1DM): Although SGLT2 inhibitors are 
contraindicated in T1DM due to the risk of euglycemic diabetic 
ketoacidosis (DKA), there is growing interest in their potential 
role in T1DM management, particularly as adjuncts to insulin 
therapy for improving glycemic control and weight loss.

• Non-diabetic Kidney Disease: Early studies suggest that 
SGLT2 inhibitors may benefit patients with non-diabetic 
CKD, including those with IgA nephropathy, lupus nephritis, 
and polycystic kidney disease. Ongoing trials like EMPA-
KIDNEY are assessing the benefits of SGLT2 inhibitors in 
these populations [16].

• Acute Kidney Injury (AKI): Preclinical data suggest that 
SGLT2 inhibitors may have a protective effect in the setting of 
acute kidney injury, particularly in surgical or septic settings, by 
reducing inflammation and preserving renal perfusion.
Understanding the Mechanisms of Action.

Although the hemodynamic effects of SGLT2 inhibitors 
are well-documented, their full mechanistic profile remains 
incompletely understood. Future research should aim to:

1. Further elucidate the cardiometabolic effects of SGLT2 
inhibition, particularly regarding mitochondrial function, 
inflammation, and endothelial dysfunction [39,40].

2. Investigate the role of ketone bodies in myocardial energy 
metabolism, particularly in heart failure with reduced ejection 
fraction (HFrEF) and preserved ejection fraction (HFpEF) [36].

3. Examine the long-term impact of SGLT2 inhibitors on 
fibrosis and myocardial remodeling, as well as their potential in 
treating heart diseases with extensive fibrosis such as restrictive 
cardiomyopathies.
Personalized Therapy and Biomarkers.

Given the broad range of effects of SGLT2 inhibitors, further 
studies are required to:

• Identify biomarkers that predict individual patient responses 
to therapy. For example, genetic markers or biomarkers of 
fibrosis, inflammation, or renal function could help identify 
patients most likely to benefit from SGLT2 inhibitors.

• Explore personalized dosing regimens based on kidney 
function, comorbidities, and genetic predisposition to side 
effects such as genital infections and hypotension.

• Investigate the role of SGLT2 inhibitors in combination with 
other novel therapies (e.g., GLP-1 receptor agonists, finerenone) 
for more tailored treatment of heart failure and CKD [72,73].
Addressing Safety Concerns.

While the safety profile of SGLT2 inhibitors is favorable, 
adverse effects such as euglycemic DKA, genital infections, and 

volume depletion still require vigilance. Future research should 
focus on:

• Further investigating the long-term safety of SGLT2 
inhibitors, especially in patients with multiple comorbidities or 
those who are frail and elderly.

• Developing strategies for minimizing the risk of DKA, 
including improving patient education, refining diagnostic 
criteria, and exploring adjunctive treatments to prevent the 
condition.

• Evaluating the risk-benefit ratio in more diverse populations, 
including those with non-proteinuric CKD, severe renal 
impairment, and diabetic ketoacidosis risk.
Exploring New Mechanisms and Drug Combinations.

As the understanding of SGLT2 inhibitors deepens, 
their application in combination therapy with other agents 
(such as SGLT1/2 inhibitors, GLP-1 receptor agonists, or 
PCKS9 inhibitors) may offer synergistic benefits in treating 
cardiovascular, renal, and metabolic diseases. Furthermore:

• The use of dual SGLT1/2 inhibitors (e.g., sotagliflozin) could 
provide enhanced glucose-lowering effects, and early studies 
suggest they may confer additional benefits for patients with 
more severe forms of diabetes and heart failure.

• There is also growing interest in the role of SGLT2 inhibitors 
in autophagy and mitochondrial dysfunction, especially in aging 
populations and those with neurodegenerative diseases.
Conclusion: A Transformative Therapy with Expanding 
Potential.

SGLT2 inhibitors have already proven themselves as game-
changing therapeutics for diabetes, heart failure, and chronic 
kidney disease. Their organ-protective effects – beyond glucose 
control – have established them as a cornerstone of modern 
medical treatment. As clinical evidence continues to grow, these 
agents will likely play an increasingly important role in treating 
a wider range of diseases and improving long-term patient 
outcomes.

SGLT2 inhibitors offer more than just glucose control – they 
provide cardioprotective, nephroprotective, and metabolic 
benefits, positioning them as multi-organ protective agents.

Future research will likely expand their use to other conditions, 
such as acute kidney injury and non-diabetic CKD, and improve 
personalized treatment approaches.

Safety concerns (e.g., DKA, genital infections) remain, but 
careful patient management and education can mitigate most 
risks.

Combination therapies (SGLT1/2 inhibitors, GLP-1 RAs) may 
offer even greater benefits in treating complex cardiometabolic 
diseases.
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