

GEORGIAN MEDICAL NEWS

ISSN 1512-0112

№ 12 (369) Декабрь 2025

ТБИЛИСИ - NEW YORK

ЕЖЕМЕСЯЧНЫЙ НАУЧНЫЙ ЖУРНАЛ

Медицинские новости Грузии
საქართველოს სამედიცინო სიახლეები

GEORGIAN MEDICAL NEWS

Monthly Georgia-US joint scientific journal published both in electronic and paper formats of the Agency of Medical Information of the Georgian Association of Business Press. Published since 1994. Distributed in NIS, EU and USA.

GMN: Georgian Medical News is peer-reviewed, published monthly journal committed to promoting the science and art of medicine and the betterment of public health, published by the GMN Editorial Board since 1994. GMN carries original scientific articles on medicine, biology and pharmacy, which are of experimental, theoretical and practical character; publishes original research, reviews, commentaries, editorials, essays, medical news, and correspondence in English and Russian.

GMN is indexed in MEDLINE, SCOPUS, PubMed and VINITI Russian Academy of Sciences. The full text content is available through EBSCO databases.

GMN: Медицинские новости Грузии - ежемесячный рецензируемый научный журнал, издаётся Редакционной коллегией с 1994 года на русском и английском языках в целях поддержки медицинской науки и улучшения здравоохранения. В журнале публикуются оригинальные научные статьи в области медицины, биологии и фармации, статьи обзорного характера, научные сообщения, новости медицины и здравоохранения. Журнал индексируется в MEDLINE, отражён в базе данных SCOPUS, PubMed и ВИНИТИ РАН. Полнотекстовые статьи журнала доступны через БД EBSCO.

GMN: Georgian Medical News – საქართველოს სამედიცინო ხიახლები – არის უფლებული სამეცნიერო სამედიცინო რევიუზირებადი ჟურნალი, გამოიცემა 1994 წლიდან, წარმოადგენს სარედაქციო კოლეგიისა და აშშ-ის მეცნიერების, განათლების, ინდუსტრიის, ხელოვნებისა და ბუნებისმეცნიელების საერთაშორისო აკადემიის ერთობლივ გამოცემას. GMN-ში რეცენზირდება ინგლისურ ენებზე ქვეყნება ექსპერიმენტული, თეორიული და პრაქტიკული ხასიათის ორიგინალური სამეცნიერო სტატიები მედიცინის, ბიოლოგიისა და ფარმაციის სფეროში, მიმოხილვითი ხასიათის სტატიები.

ჟურნალი ინდექსირებულია MEDLINE-ის საერთაშორისო სისტემაში, ასახულია SCOPUS-ის, PubMed-ის და ВИНИТИ РАН-ის მონაცემთა ბაზებში. სტატიების სრული ტექსტი ხელმისაწვდომია EBSCO-ს მონაცემთა ბაზებიდან.

WEBSITE

www.geomednews.com

К СВЕДЕНИЮ АВТОРОВ!

При направлении статьи в редакцию необходимо соблюдать следующие правила:

1. Статья должна быть представлена в двух экземплярах, на русском или английском языках, напечатанная через **полтора интервала на одной стороне стандартного листа с шириной левого поля в три сантиметра**. Используемый компьютерный шрифт для текста на русском и английском языках - **Times New Roman (Кириллица)**, для текста на грузинском языке следует использовать **AcadNusx**. Размер шрифта - **12**. К рукописи, напечатанной на компьютере, должен быть приложен CD со статьей.

2. Размер статьи должен быть не менее десяти и не более двадцати страниц машинописи, включая указатель литературы и резюме на английском, русском и грузинском языках.

3. В статье должны быть освещены актуальность данного материала, методы и результаты исследования и их обсуждение.

При представлении в печать научных экспериментальных работ авторы должны указывать вид и количество экспериментальных животных, применяющиеся методы обезболивания и усыпления (в ходе острых опытов).

4. К статье должны быть приложены краткое (на полстраницы) резюме на английском, русском и грузинском языках (включающее следующие разделы: цель исследования, материал и методы, результаты и заключение) и список ключевых слов (key words).

5. Таблицы необходимо представлять в печатной форме. Фотокопии не принимаются. **Все цифровые, итоговые и процентные данные в таблицах должны соответствовать таковым в тексте статьи.** Таблицы и графики должны быть озаглавлены.

6. Фотографии должны быть контрастными, фотокопии с рентгенограмм - в позитивном изображении. Рисунки, чертежи и диаграммы следует озаглавить, пронумеровать и вставить в соответствующее место текста **в tiff формате**.

В подписях к микрофотографиям следует указывать степень увеличения через окуляр или объектив и метод окраски или импрегнации срезов.

7. Фамилии отечественных авторов приводятся в оригинальной транскрипции.

8. При оформлении и направлении статей в журнал МНГ просим авторов соблюдать правила, изложенные в «Единых требованиях к рукописям, представляемым в биомедицинские журналы», принятых Международным комитетом редакторов медицинских журналов - <http://www.spinesurgery.ru/files/publish.pdf> и http://www.nlm.nih.gov/bsd/uniform_requirements.html В конце каждой оригинальной статьи приводится библиографический список. В список литературы включаются все материалы, на которые имеются ссылки в тексте. Список составляется в алфавитном порядке и нумеруется. Литературный источник приводится на языке оригинала. В списке литературы сначала приводятся работы, написанные знаками грузинского алфавита, затем кириллицей и латиницей. Ссылки на цитируемые работы в тексте статьи даются в квадратных скобках в виде номера, соответствующего номеру данной работы в списке литературы. Большинство цитированных источников должны быть за последние 5-7 лет.

9. Для получения права на публикацию статья должна иметь от руководителя работы или учреждения визу и сопроводительное отношение, написанные или напечатанные на бланке и заверенные подписью и печатью.

10. В конце статьи должны быть подписи всех авторов, полностью приведены их фамилии, имена и отчества, указаны служебный и домашний номера телефонов и адреса или иные координаты. Количество авторов (соавторов) не должно превышать пяти человек.

11. Редакция оставляет за собой право сокращать и исправлять статьи. Корректура авторам не высылается, вся работа и сверка проводится по авторскому оригиналу.

12. Недопустимо направление в редакцию работ, представленных к печати в иных издательствах или опубликованных в других изданиях.

При нарушении указанных правил статьи не рассматриваются.

REQUIREMENTS

Please note, materials submitted to the Editorial Office Staff are supposed to meet the following requirements:

1. Articles must be provided with a double copy, in English or Russian languages and typed or computer-printed on a single side of standard typing paper, with the left margin of **3** centimeters width, and **1.5** spacing between the lines, typeface - **Times New Roman (Cyrillic)**, print size - **12** (referring to Georgian and Russian materials). With computer-printed texts please enclose a CD carrying the same file titled with Latin symbols.

2. Size of the article, including index and resume in English, Russian and Georgian languages must be at least 10 pages and not exceed the limit of 20 pages of typed or computer-printed text.

3. Submitted material must include a coverage of a topical subject, research methods, results, and review.

Authors of the scientific-research works must indicate the number of experimental biological species drawn in, list the employed methods of anesthetization and soporific means used during acute tests.

4. Articles must have a short (half page) abstract in English, Russian and Georgian (including the following sections: aim of study, material and methods, results and conclusions) and a list of key words.

5. Tables must be presented in an original typed or computer-printed form, instead of a photocopied version. **Numbers, totals, percentile data on the tables must coincide with those in the texts of the articles.** Tables and graphs must be headed.

6. Photographs are required to be contrasted and must be submitted with doubles. Please number each photograph with a pencil on its back, indicate author's name, title of the article (short version), and mark out its top and bottom parts. Drawings must be accurate, drafts and diagrams drawn in Indian ink (or black ink). Photocopies of the X-ray photographs must be presented in a positive image in **tiff format**.

Accurately numbered subtitles for each illustration must be listed on a separate sheet of paper. In the subtitles for the microphotographs please indicate the ocular and objective lens magnification power, method of coloring or impregnation of the microscopic sections (preparations).

7. Please indicate last names, first and middle initials of the native authors, present names and initials of the foreign authors in the transcription of the original language, enclose in parenthesis corresponding number under which the author is listed in the reference materials.

8. Please follow guidance offered to authors by The International Committee of Medical Journal Editors guidance in its Uniform Requirements for Manuscripts Submitted to Biomedical Journals publication available online at: http://www.nlm.nih.gov/bsd/uniform_requirements.html
http://www.icmje.org/urm_full.pdf

In GMN style for each work cited in the text, a bibliographic reference is given, and this is located at the end of the article under the title "References". All references cited in the text must be listed. The list of references should be arranged alphabetically and then numbered. References are numbered in the text [numbers in square brackets] and in the reference list and numbers are repeated throughout the text as needed. The bibliographic description is given in the language of publication (citations in Georgian script are followed by Cyrillic and Latin).

9. To obtain the rights of publication articles must be accompanied by a visa from the project instructor or the establishment, where the work has been performed, and a reference letter, both written or typed on a special signed form, certified by a stamp or a seal.

10. Articles must be signed by all of the authors at the end, and they must be provided with a list of full names, office and home phone numbers and addresses or other non-office locations where the authors could be reached. The number of the authors (co-authors) must not exceed the limit of 5 people.

11. Editorial Staff reserves the rights to cut down in size and correct the articles. Proof-sheets are not sent out to the authors. The entire editorial and collation work is performed according to the author's original text.

12. Sending in the works that have already been assigned to the press by other Editorial Staffs or have been printed by other publishers is not permissible.

Articles that Fail to Meet the Aforementioned Requirements are not Assigned to be Reviewed.

ავტორია საშურალებოდ!

რედაქტორი სტატიის წარმოდგენისას საჭიროა დავიცვათ შემდეგი წესები:

1. სტატია უნდა წარმოადგინოთ 2 ცალად, რუსულ ან ინგლისურ ენებზე, დაბეჭდილი სტანდარტული ფურცლის 1 გვერდზე, 3 სმ სიგანის მარცხენა ველისა და სტრიქონებს შორის 1,5 ინტერვალის დაცვით. გამოყენებული კომპიუტერული შრიფტი რუსულ და ინგლისურნოვან ტექსტებში - **Times New Roman (Кириллицა)**, ხოლო ქართულენოვან ტექსტში საჭიროა გამოვიყენოთ **AcadNusx**. შრიფტის ზომა – 12. სტატიას თან უნდა ახლდეს CD სტატიით.

2. სტატიის მოცულობა არ უნდა შეადგენდეს 10 გვერდზე ნაკლებს და 20 გვერდზე მეტს ლიტერატურის სის და რეზიუმების (ინგლისურ, რუსულ და ქართულ ენებზე) ჩათვლით.

3. სტატიაში საჭიროა გამუქდება: საკითხის აქტუალობა; კვლევის მიზანი; საკვლევი მასალა და გამოყენებული მეთოდები; მიღებული შედეგები და მათი განსჯა. ექსპერიმენტული ხასიათის სტატიების წარმოდგენისას ავტორებმა უნდა მიუთითონ საექსპერიმენტო ცხოველების სახეობა და რაოდენობა; გაუტკივარებისა და დაძინების მეთოდები (მწვავე ცდების პირობებში).

4. სტატიას თან უნდა ახლდეს რეზიუმე ინგლისურ, რუსულ და ქართულ ენებზე არანაკლებ ნახევარი გვერდის მოცულობისა (სათაურის, ავტორების, დაწესებულების მითითებით და უნდა შეიცავდეს შემდეგ განყოფილებებს: მიზანი, მასალა და მეთოდები, შედეგები და დასკვნები; ტექსტუალური ნაწილი არ უნდა იყოს 15 სტრიქონზე ნაკლები) და საკვანძო სიტყვების ჩამონათვალი (key words).

5. ცხრილები საჭიროა წარმოადგინოთ ნაბეჭდი სახით. ყველა ციფრული, შემაჯამებელი და პროცენტული მონაცემები უნდა შეესაბამებოდეს ტექსტში მოყვანილს.

6. ფოტოსურათები უნდა იყოს კონტრასტული; სურათები, ნახაზები, დიაგრამები - დასათაურებული, დანორმილი და სათანადო ადგილას ჩასმული. რენტგენოგრამების ფოტოსასლები წარმოადგინეთ პოზიტიური გამოსახულებით **tiff** ფორმატში. მიკროფოტ-სურათების წარწერებში საჭიროა მიუთითოთ ოკულარის ან ობიექტივის საშუალებით გადიდების ხარისხი, ანათალების შედებვის ან იმპრეგნაციის მეთოდი და აღნიშნოთ სურათის ზედა და ქვედა ნაწილები.

7. სამამულო ავტორების გვარები სტატიაში აღინიშნება ინიციალების თანდართვით, უცხოურისა – უცხოური ტრანსკრიპციით.

8. სტატიას თან უნდა ახლდეს ავტორის მიერ გამოყენებული სამამულო და უცხოური შრომების ბიბლიოგრაფიული სია (ბოლო 5-8 წლის სიღრმით). ანბანური წყობით წარმოდგენილ ბიბლიოგრაფიულ სიაში მიუთითეთ ჯერ სამამულო, შემდეგ უცხოელი ავტორები (გვარი, ინიციალები, სტატიის სათაური, ურნალის დასახელება, გამოცემის ადგილი, წელი, ურნალის №, პირველი და ბოლო გვერდები). მონოგრაფიის შემთხვევაში მიუთითეთ გამოცემის წელი, ადგილი და გვერდების საერთო რაოდენობა. ტექსტში კვადრატულ ფრჩილებში უნდა მიუთითოთ ავტორის შესაბამისი N ლიტერატურის სიის მიხედვით. მიზანშეწონილია, რომ ციტირებული წყაროების უმეტესი ნაწილი იყოს 5-6 წლის სიღრმის.

9. სტატიას თან უნდა ახლდეს: ა) დაწესებულების ან სამეცნიერო ხელმძღვანელის წარდგინება, დამოწმებული ხელმოწერითა და ბეჭდით; ბ) დარგის სპეციალისტის დამოწმებული რეცეზია, რომელშიც მითითებული იქნება საკითხის აქტუალობა, მასალის საკმაობა, მეთოდის სანდოობა, შედეგების სამეცნიერო-პრაქტიკული მნიშვნელობა.

10. სტატიის ბოლოს საჭიროა ყველა ავტორის ხელმოწერა, რომელთა რაოდენობა არ უნდა აღემატებოდეს 5-ს.

11. რედაქტორი იტოვებს უფლებას შეასწოროს სტატიას. ტექსტშე მუშაობა და შეჯრება ხდება საავტორო ორიგინალის მიხედვით.

12. დაუშვებელია რედაქტორი ისეთი სტატიის წარდგენა, რომელიც დასაბეჭდიდად წარდგენილი იყო სხვა რედაქტორიაში ან გამოქვეყნებული იყო სხვა გამოცემებში.

აღნიშნული წესების დარღვევის შემთხვევაში სტატიები არ განიხილება.

Содержание:

Yuliya Tyravtska, Dmytro Maltsev, Valentyna Moyseyenko, Vitalii Reshetyo, Volodymyr Yakymenko.	
IMMUNOMODULATORS IN THE TREATMENT OF ATHEROSCLEROSIS AND OTHER CHRONIC HEART DISEASES: PROSPECTS ANDRISKS.....	6-16
Aldabekova G, Khamidullina Z, Abdrashidova S, Musina A, Kassymbek S, Kokisheva G, Suleimenova Zh, Sarsenbieva A, Kamalbekova G. ASSESSMENT OF THE IMPLEMENTATION OF WHO INFECTION PREVENTION AND CONTROL (IPC) CORE COMPONENTS IN KAZAKHSTAN: FINDINGS BASED ON THE IPCAF TOOL.....	17-22
Madina Madiyeva, Gulzhan Bersimbekova, Gulnur Kanapiyanova, Mariya Prilutskaya, Aray Mukanova. ANALYSIS OF RISK FACTORS AND THEIR IMPACT ON BONE HEALTH STATUS IN KAZAKH POPULATIONS.....	23-30
Bilanishvili I, Barbakadze M, Nikabadze N, Andronikashvili G, Nanobashvili Z. AUDIOGENIC SEIZURE SUPPRESSION BY VENTRAL TEGMENTAL AREA STIMULATION.....	31-37
Yan Wang, Yulei Xie, Chong Yin, Qing Wu. EXPLORING THE MECHANISM OF ACTION OF HEMP SEEDS (CANNABIS SATIVA L.) IN TREATING OSTEOPOROSIS USING NETWORKPHARMACOLOGY.....	38-43
Marzhan Myrzakhanova, Gulshara Berdesheva, Kulsara Rustemova, Shynar Kulbayeva, Yuriy Lissitsyn, Zhuldyz Tleubergenova. TRANSFORMING MEDICAL EDUCATION IN KAZAKHSTAN: THE POTENTIAL OF VIRTUAL REALITY FOR ENHANCING THE LEARNING EXPERIENCE.....	44-51
Malinochka Arina D, Khupsergenov Emir Z, Avagyan Artyom A, Kurachenko Yulia V, Britan Inna I, Hvorostova Serafima V, Koipish Vladislav S, Siiakina Anastasiia E, Vasileva Vasilisa V, Mikheenko Diana D, Fomenko Danila A. LATE DIAGNOSIS OF ACROMEGALY IN THE SETTING OF A SOMATOPROLACTINOMA.....	52-54
Serhii Lobanov. ONTOGENETIC AND PSYCHOSOCIAL DETERMINANTS OF ADDICTIVE BEHAVIOR FORMATION AMONG UKRAINIAN YOUTH	55-62
Emzar Diasamidze, Tamaz Gvenetadze, Giorgi Antadze, Iamze Taboridze. THE IMPACT OF ANEMIA ON THE DEVELOPMENT OF INCISIONAL HERNIA, PROSPECTIVE STUDY.....	63-67
Karapetyan A.G, Ulusyan T.R, Danielyan M.H, Avetisyan E.A, Petrosyan A.A, Petrosyan S.S, Grigoryan V.S. RESEARCH OF HEMATOLOGICAL CHANGES IN INDIVIDUALS EXPOSED TO IRRADIATION FROM THE CHERNOBYL NUCLEAR POWER PLANT.....	68-71
Yaji Chen, Yin Wang. THE RELATIONSHIP BETWEEN SOCIAL CAPITAL AND WORKERS' MENTAL HEALTH IN CONTEMPORARY CHINA.....	72-78
Begaidarova R.Kh, Alshynbekova G.K, Kadyrova I.A, Alshimbayeva Z.Ye, Nassakayeva G.Ye, Zolotaryova O.A, Omarova G.M. CASE REPORT OF INFLUENZA A (H1N1) PDM 09 STRAIN / KARAGANDA/ 06/2022 IN A CHILD AGED 3 YEARS.....	79-86
Fahad Saleh Ayed AL-Anazi, Albadawi Abdelbagi Talha. ANTIBIOTICGRAM OF URINARY CATHETER-ASSOCIATED BACTERIAL PATHOGENS IN INTENSIVE CARE UNIT, KING KHALID GENERAL HOSPITAL, HAIFER AL-BATEN, SAUDI ARABIA.....	87-95
Serik Baidurin, Ybraim Karim, Akhmetzhanova Shynar, Tkachev Victor, Moldabayeva Altyn, Eshmagambetova Zhanna, Darybayeva Aisha. COEXISTENCE OF APLASTIC ANEMIA AND PAROXYSMAL NOCTURNAL HEMOGLOBINURIA: DIAGNOSTIC CHALLENGES AND THERAPEUTIC STRATEGIES - CASE REPORT.....	96-101
Liika Leshkasheli, Darejan Bolkvadze, Lia Askilashvili, Maria Chichashvili, Megi Khanishvili, Giorgi Tservadze, Nana Balarjishvili, Leila Kvachadze, Elisabed Zaldastanishvili. PHENOTYPIC CHARACTERIZATION OF FIVE PHAGES ACTIVE AGAINST ANTIBIOTIC-RESISTANT <i>KLEBSIELLA PNEUMONIAE</i>	102-112
Aliya Manzoorudeen, Marwan Ismail, Ahmed Luay Osman Hashim, Abdelgadir Elamin Eltom. ASSOCIATION BETWEEN GALECTIN-3 AND MICROVASCULAR COMPLICATIONS IN TYPE 2 DIABETES MELLITUS: A COMPARATIVE STUDY.....	113-119
Gulmira Derbissalina, Zhanagul Bekbergenova, Ayagoz Umbetzhanova, Gulsum Mauletbayeva, Gulnara Bedelbayeva. BIOMARKERS OF CARDIOMETABOLIC RISK IN PATIENTS WITH ARTERIAL HYPERTENSION: A CROSS-SECTIONAL PILOT STUDY.....	120-126
Madina Rashova, Saule Akhmetova, Berik Tuleubaev, Dinara Turebekova, Amina Koshanova, Adilet Omenov, Bakdaulet Kambyl, Yekaterina Kossilova. ASSESSMENT OF CLINICAL SYMPTOMS OF ACUTE TOXICITY FOLLOWING THE IMPLANTATION OF A NANOCELLULOSE-BASEDBIOCOMPOSITE.....	127-137
Dali Beridze, Mariam Metreveli, Avtandil Meskhidze, Galina Meparishvili, Aliosha Bakuridze, Malkhaz Jokhadze, Dali Berashvili, Lasha Bakuridze. STUDY OF THE BIOACTIVE COMPOUND COMPOSITION, ANTIMICROBIAL, AND CYTOTOXIC ACTIVITIES OF ENDEMIC PLANT SPECIES OF ADJARA-LAZETI.....	138-152

Faisal Younis Shah, Reece Clough, Fatima Saleh, Mark Poustie, Ioannis Balanos, Ahmed Najjar.	
FACTORS AFFECTING MORTALITY IN PATIENTS WITH HIP FRACTURES AND SHAH HIP FRACTURE MORTALITY SCORE: A RISK QUANTIFICATION TOOL.....	153-159
Anas Ali Alhur, Layan S. Alqahtani, Lojain Al Faraj, Duha Alqahtani, Maram Fahad, Norah Almoneef, Ameerah Balobaied, Rawan Alamri, Aseel Almashal, Fatimah Alkathiri, Lama Alqahtani, Lama Al-Shahrani, Hani Alasmari, Nouran Al Almaie, Sarah Alshehri.	
GLOBAL RESEARCH TRENDS IN MRI SAFETY AND PATIENT AWARENESS: A BIBLIOMETRIC ANALYSIS (2000–2025)...	160-167
Virina Natalia V, Kuchieva Lana M, Baturina Yulia S, Fizikova Aliya B, Gereeva Madina M, Bitiev Batraz F, Apakhaeva Karina K, Manukhova Natalia M, Rasulova Fatima Z, Kornev Egor M, Rodionova Ekaterina A.	
DANIO RERIO (ZEBRAFISH) - A UNIQUE AND INTEGRATIVE PLATFORM FOR 21ST CENTURY BIOMEDICAL RESEARCH.....	168-173
Salah Eldin Omar Hussein, Shamsa Murad Abdalla Murad, Ogail Yousif Dawod, Elryah I Ali, Shawgi A. Elsiddig, Rabab H. Elshaikh A, Awadh S. Alsuhbi, Tagwa Yousif Elsayed Yousif, Siednamohammed Nagat, Amin SI Banaga, Salah Y. Ali, Marwan Ismail, Ayman Hussien Alfeel.	
BIOCHEMICAL ASSOCIATION BETWEEN CALCIUM HOMEOSTASIS AND SERUM URIC ACID LEVELS IN PATIENTS WITH HYPOTHYROIDISM: A COMPARATIVE EVALUATION WITH 25-HYDROXYVITAMIN D.....	174-179
Markova OO, Safonchyk OI, Orlovska IH, Kovalchuk OM, Sukharieva AO, Myrza SS, Keidaluk VO.	
PROTECTION OF CONSUMER RIGHTS IN THE FIELD OF ELECTRONIC COMMERCE OF MEDICINES.....	180-187
Ilona Tserediani, Merab Khvadagian.	
ENDONASAL ENDOSCOPIC DACRYOCYSTORHINOSTOMY USING RADIOFREQUENCY (RF) IN CHRONIC ABSCESSSED DACRYOCYSTITIS: A PROSPECTIVE STUDY.....	188-189
Nadezhda Omelchuk.	
HYPERCORTICISM IN THE PATHOGENESIS OF ACUTE RADIATION SICKNESS AND CONDITIONS OF INCREASED RADIORESISTANCE.....	190-196
Anas Ali Alhur, Raghad Alharajeen, Aliah Alshabanah, Jomanah Alghuwainem, Majed Almukhlifi, Abdullah Al Alshikh, Nasser Alsubaie, Ayat Al Sinan, Raghad Alotaibi, Nadrah Alamri, Atheer Marzouq Alshammari, Nawal Alasmari, Deema Alqurashi, Shahad Alharthi, Renad Alosaimi.	
THE IMPACT OF VISION 2030 ON PHARMACY STUDENTS' CAREER OUTLOOKS AND SPECIALIZATION CHOICES: A CROSS-SECTIONAL ANALYSIS.....	197-203
Fitim Alidema, Arieta Hasani Alidema, Lirim Mustafa, Mirlinde Havolli, Fellenza Abazi.	
LDL-CHOLESTEROL LOWERING WITH ATORVASTATIN, ROSUVASTATIN AND SIMVASTATIN: RESULTS OF A RETROSPECTIVE OBSERVATIONAL STUDY.....	204-209
Ainur Amanzholkyzy, Yersulu Sagidanova, Edgaras Stankevicius, Ainur Donayeva, Ulziya Sarsengali.	
HEAVY METAL TOXICITY VERSUS TRACE ELEMENT PROTECTION IN WOMEN'S REPRODUCTIVE HEALTH - A SYSTEMATIC REVIEW.....	210-216
Marwan Ismail, Mutaz Ibrahim Hassan, Assiya Gherdaoui, Majid Alnaimi, Raghda Altamimi, Srija Manimaran, Mahir Khalil Jallo, Ramprasad Muthukrishnan, Praveen Kumar Kandakurthi, Jaborova Mehroba Salomudinovna, Shukurov Firuz Abdufattoevich, Shawgi A. Elsiddig, Tagwa Yousif Elsayed Yousif, Asaad Babker, Ahmed L. Osman, Abdelgadir Elamin.	
ASSOCIATION BETWEEN EXERCISE MODALITIES AND GLYCEMIC CONTROL IN TYPE 2 DIABETES.....	217-223
Tamar Zarginava, Zaza Sopromadze.	
THE PRIORITY OF CONTEMPORARY MEDICAL UNIVERSITY MODELS IN SUBSTANTIATING BENCHMARKING OF MARKETING SOCIO-ETHICAL STANDARDS.....	224-230
Svetlana Shikanova, Altnay Kabdygaliyeva.	
THE SIGNIFICANCE OF INTERLEUKIN-22 AND HOMOCYSTEINE IN THE PROGNOSIS OF PREMATURE ANTEPARTUM RUPTURE OF MEMBRANES IN PREGNANT WOMEN.....	231-242
Shahad A. Badr, Taqwa B. Thanoon, Zeina A. Althanoon, Marwan M. Merkhan.	
CHARACTERISTICS AND MANAGEMENT OF RESPIRATORY AILMENTS IN PAEDIATRICS: A PROSPECTIVE CLINICAL STUDY	243-247
Ulviiya Z. Nabizade, Orkhan Isayev, Gunel R. Haci, Kamal İ. Kazimov, Gulmira H. Nasirova, Rezeda R. Kaziyeva, Elchin H. Guliyev, Isa H. Isayev.	
EVALUATION OF THE DEEP INSPIRATION BREATH-HOLD TECHNIQUE TO IMPROVE DOSIMETRIC OUTCOMES IN RADIOTHERAPY FOR STAGE III NON-SMALL CELL LUNG CANCER.....	248-252
Galina Battalova, Yerkezhan Kalshabay, Zhamilya Zholdybay, Dinara Baigussova, Bolatbek Baimakhanov.	
NON-INVASIVE QUANTITATIVE CT PERfusion OF THE LIVER IN AUTOIMMUNE HEPATITIS.....	253-260
Lachashvili L, Khubua M, Jangavadze M, Bedinasvili Z.	
MiR-29a, miR-222 AND miR-132 IN THE BLOOD PLASMA OF PREGNANT WOMEN AS PREDICTORS OF GESTATIONAL DIABETES.....	261-265
Mohanad Luay Jawhar, Hadzliana Binti Zainal, Sabariah Noor Binti Harun, Baraa Ahmed Saeed.	
OMEGA-3 POLYUNSATURATED FATTY ACIDS AND HYPERTENSION: A REVIEW OF VASOACTIVE MECHANISMS AND IMPLICATIONS FOR CARDIOVASCULAR DISEASE.....	266-271

Dimash Davletov, Mukhtar Kulimbet, Indira Baibolsynova, Sergey Lee, Ildar Fakhraiyev, Alisher Makhmutov, Batyrbek Assembekov, Kairat Davletov.	
ESTIMATING THE PREVALENCE OF FAMILIAL HYPERCHOLESTEROLEMIA IN STROKE AND TRANSITORY ISCHEMIC ATTACK POPULATION: A SYSTEMATIC REVIEW AND META-ANALYSIS.....	272-281
Anas Ali Alhur, Abdullah Saeed, Anas Almalki, Hawra Alhamad, Hafez Meagammy, Norah Al Sharaef, Sarah Alakeel, Saeed Alghamdi, Abdulaziz Alqarni, Mohammed Alqarni, Muhannad Alshehri, Naif Alotaibi, Salman Almutairi, Rayan Alajhar, Adel Al-Harthi.	
IS HEALTH AT RISK? A QUANTITATIVE STUDY ASSESSING THE IMPACT OF EXCESSIVE MOBILE APPLICATION USE ON PHYSICAL AND MENTAL WELL-BEING AMONG ADULTS IN SAUDI ARABIA.....	282-288
Khatuna Kudava.	
ONYCHODYSTROPHIES IN PEDIATRIC DERMATOLOGY.....	289-292

STUDY OF THE BIOACTIVE COMPOUND COMPOSITION, ANTIMICROBIAL, AND CYTOTOXIC ACTIVITIES OF ENDEMIC PLANT SPECIES OF ADJARA-LAZETI

Dali Beridze^{1*}, Mariam Metreveli¹, Avtandil Meskhidze¹, Galina Meparishvili¹, Aliosha Bakuridze², Malkhaz Jokhadze²,
Dali Berashvili², Lasha Bakuridze².

¹Batumi Shota Rustaveli State University, Institute of Phytopathology and Biodiversity, Georgia.

²Tbilisi State Medical University, Georgia.

Abstract.

The flora of Adjara (Southern Colchis) is characterized by high biodiversity, a significant proportion of endemism, and unique forest ecosystems. Our study aimed to analyze the biologically active compounds in leaves of five Adjara-Lazeti endemic species: *Astragalus sommieri*, *Quercus petraea* subsp. *dshorochensis*, *Amaracus rotundifolius*, *Rhododendron smirnovii*, and *Rhododendron ungernii*. Methanolic leaf extracts were prepared and analyzed using GC-MS to identify bioactive constituents. Antimicrobial (specifically fungicidal) activity was evaluated in vitro against *Colletotrichum gloeosporioides*, *Alternaria alternata*, and *Fusarium solani* using the agar well diffusion method. Cytotoxicity was assessed on human lung carcinoma (A-549) and normal skin fibroblasts (WS-1) using resazurin and Hoechst assays. For GC-MS analysis and cytotoxicity assays, methanolic extracts were prepared, the aqueous and 40% ethanolic extracts were used exclusively for antifungal activity evaluation. GC-MS analyses revealed a diverse array of bioactive compounds, including phenolic acids, flavonoids, terpenoids, sterols, etc. *Rhododendron ungernii* extract exhibited the highest selective cytotoxicity against A-549 cells ($IC_{50} = 12.4 \pm 0.5 \mu\text{g/ml}$; SI = 9.68). Strong antifungal activity was observed in *R. ungernii*, *Astragalus sommieri*, and *R. smirnovii* extracts. These results suggest the potential of these endemic species as sources of selective anticancer and antimicrobial agents. All experiments were performed in triplicate. Results are expressed as mean \pm standard deviation (SD). Statistical analysis was carried out using one-way analysis of variance (ANOVA). Differences were considered statistically significant at $p < 0.05$.

Key words. Adjara-Lazeti endemics, GC-MS, bioactive compounds, antifungal, cytotoxicity, selective anticancer activity.

Introduction.

Adjara, or the South Colchic floristic region, occupies a noteworthy place due to the exceptional diversity of its vegetation cover, the high proportion of endemic species, and the uniqueness of its forest ecosystems. The flora of Adjara is distinguished by remarkable diversity and originality, which is conditioned by ancient plant communities, endemics, and relicts that were formed as early as the Tertiary period (Paleogene). According to geographic structure, the endemic flora of Adjara includes Caucasian, Georgian, Colchic, Adjara-Lazeti, and Adjara local endemic plant species [1-3].

Comprehensive study of endemic plants with localized distribution is of great importance. In earlier years, the endemic plant species of Adjara and Adjara-Lazeti had been

insufficiently investigated. We initiated their study not only from biodiversity and botanical perspectives but also in terms of their phytochemical composition and biological activity.

The objective of the present research was to determine the content of bioactive compounds in the leaves of five endemic species of Adjara-Lazeti belonging to the genera *Quercus* L., *Rhododendron* L., *Astragalus* L., and *Amaracus* Hill. (*Origanum* L.); and to assess the antimicrobial (specifically, fungicidal) and cytotoxic activities of extracts obtained from their leaves. According to scientific literature, species representing these botanical genera are known to contain biologically active compounds and have practical applications in pharmacy, medicine, cosmetology, agriculture, and other fields [4-8]. Therefore, we attach great significance to the study of previously unexplored endemic representatives of these genera in Adjara-Lazeti.

Based on the aim of the research, the objectives of the study were:

1. To collect analytical plant material of the target species in the subalpine and alpine zones of Adjara;
2. To process the collected raw material and prepare extracts for determining the content of biologically active compounds and for assessing antimicrobial and cytotoxic activities under *in vitro* conditions;

To determine fungicidal and cytotoxic activities.

Materials and Methods.

Plant Material: The research objects were five endemic plant species of Adjara-Lazeti: *Astragalus sommieri* Freyn, *Quercus petraea* subsp. *dshorochensis* (K.Koch) Menitsky, *Amaracus rotundifolius* (Boiss.) Briq., *Rhododendron smirnovii* Trautv., and *Rhododendron ungernii* Trautv. *Astragalus sommieri* is a perennial herbaceous plant, whereas the remaining species are woody trees and shrubs. Both *Rhododendron* species are evergreen shrubs growing in the subalpine zone of the Adjara floristic region.

Plant material was collected during field expeditions and processed at the Department of Biodiversity Monitoring and Conservation, Institute of Phytopathology and Biodiversity, Batumi Shota Rustaveli State University.

Preparation of Plant Extracts:

Different extraction protocols were applied depending on the type of analysis and biological activity evaluated.

For GC-MS analysis and cytotoxicity assays, methanolic extracts were prepared.

Briefly, 5 g of air-dried and powdered leaf material were mixed with 25 mL of methanol and extracted by maceration.

After filtration, the solvent was evaporated under reduced pressure.

For GC-MS analysis, 50–55 μ L of BSTFA/EtAc (40:10) was added to the dried residue, followed by heating at 70 °C for 20 min.

After cooling, 1 μ L of the derivatized sample was injected into the GC-MS system.

GC/MS Conditions: Agilent Technologies 7000 GC/MS Triple Quad; column: Elite 5-MS, 30 m \times 250 μ m \times 0.25 μ m; oven temperature: 60–310°C (programmed mode); injector: 250°C; transfer line: 310°C; carrier gas: helium, 1 mL/min; ionization: EI 70 eV; scan mode: TIC. Relative quantification of the identified compounds was performed based on the percentage of peak area (% Area) in the total ion chromatogram (TIC). Peak identification was performed by comparing mass spectra to the NIST database.

For antifungal activity assays, aqueous and 40% (v/v) ethanolic extracts were prepared independently. Aqueous extracts were obtained by extracting 10 g of dried plant material with distilled water (1:10, w/v) at elevated temperature, followed by filtration. Ethanolic extracts were prepared by macerating 10 g of dried plant material in 40% ethanol at room temperature. The extracts were filtered and used for antifungal testing at different dilutions.

Methanolic extracts were used exclusively for GC-MS analysis and cytotoxicity assays, whereas aqueous and 40% ethanolic extracts were used exclusively for antifungal activity evaluation.

Fungicidal Activity Assay:

The antifungal activity of the extracts was evaluated *in vitro* using the Agar Well Diffusion method. Phytopathogenic fungi (*Colletotrichum gloeosporioides*, *Alternaria alternata*, *Fusarium solani*) were obtained from the Institute's culture collection. Sterile Potato Dextrose Agar (PDA) was poured into Petri dishes, and 6 mm wells were cut and filled with extracts. Plates were incubated at room temperature for 24 hours to allow diffusion. Fungal test cultures were inoculated around the wells, and plates were incubated at 25°C. Distilled water was used as a control. The fungicidal activity was evaluated by measuring the inhibition of fungal colony growth compared to controls. All experiments were performed in triplicate. Results are expressed as mean \pm standard deviation (SD). Statistical analysis was carried out using one-way analysis of variance (ANOVA). Differences were considered statistically significant at $p < 0.05$ [9-10].

Cytotoxicity Assay:

The cytotoxic activity of methanolic extracts was tested against human skin fibroblasts WS1 (ATCC CRL-1502) and human lung carcinoma A-549 (ATCC CCL-185).

Cell Culture: Cells were grown in DMEM supplemented with 10% fetal bovine serum, 1× sodium pyruvate, 1× vitamins, 1× non-essential amino acids, 100 IU/mL penicillin, and 100 μ g/mL streptomycin. Cultures were maintained in a humidified incubator at 37°C with 5% CO₂.

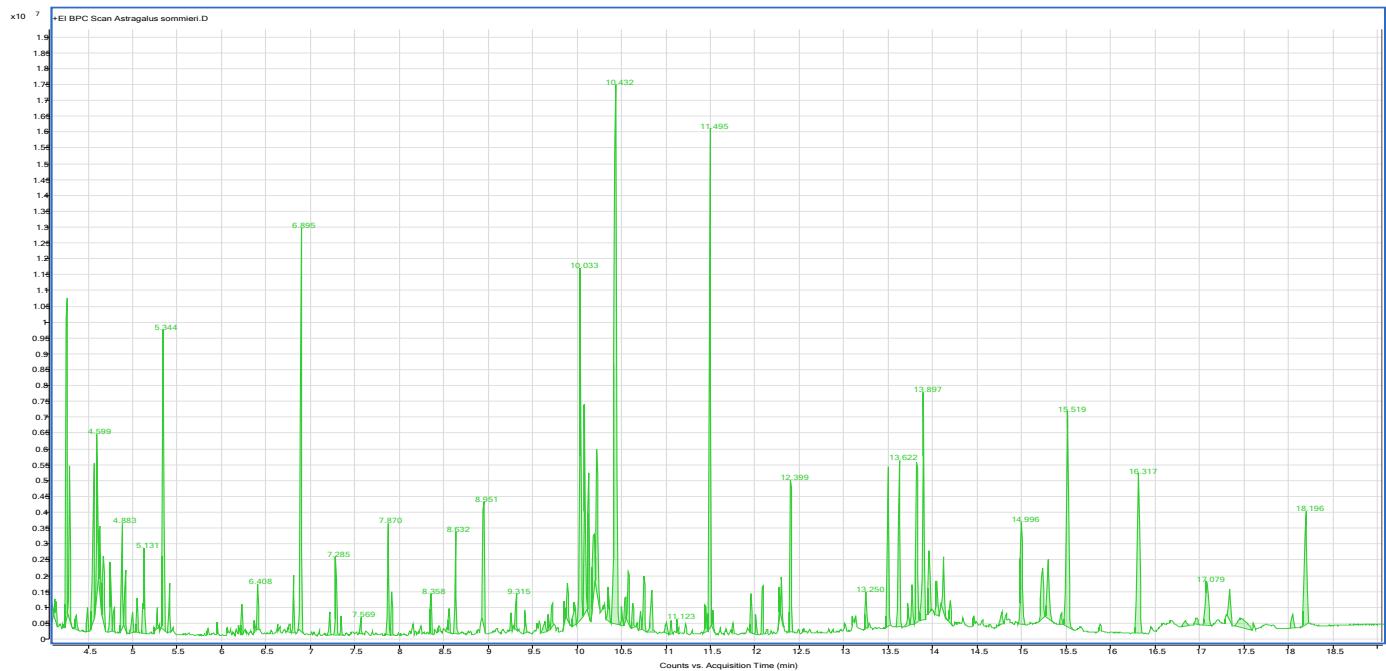
Assay Procedure: Cells were seeded in 96-well plates at 5 \times 10³ cells/well and allowed 24 h for adhesion. Test extracts, dissolved in DMSO (final concentration 0.5%), were added to each well. After 48 h, cytotoxicity was assessed using Resazurin and Hoechst staining. Fluorescence was measured with a plate reader (FLTM, Labsystems, Milford, MA, USA) at an excitation

wavelength of 530 nm and emission of 590 nm. Cytotoxicity was expressed as the IC₅₀, i.e., the concentration inhibiting 50% of cell growth.

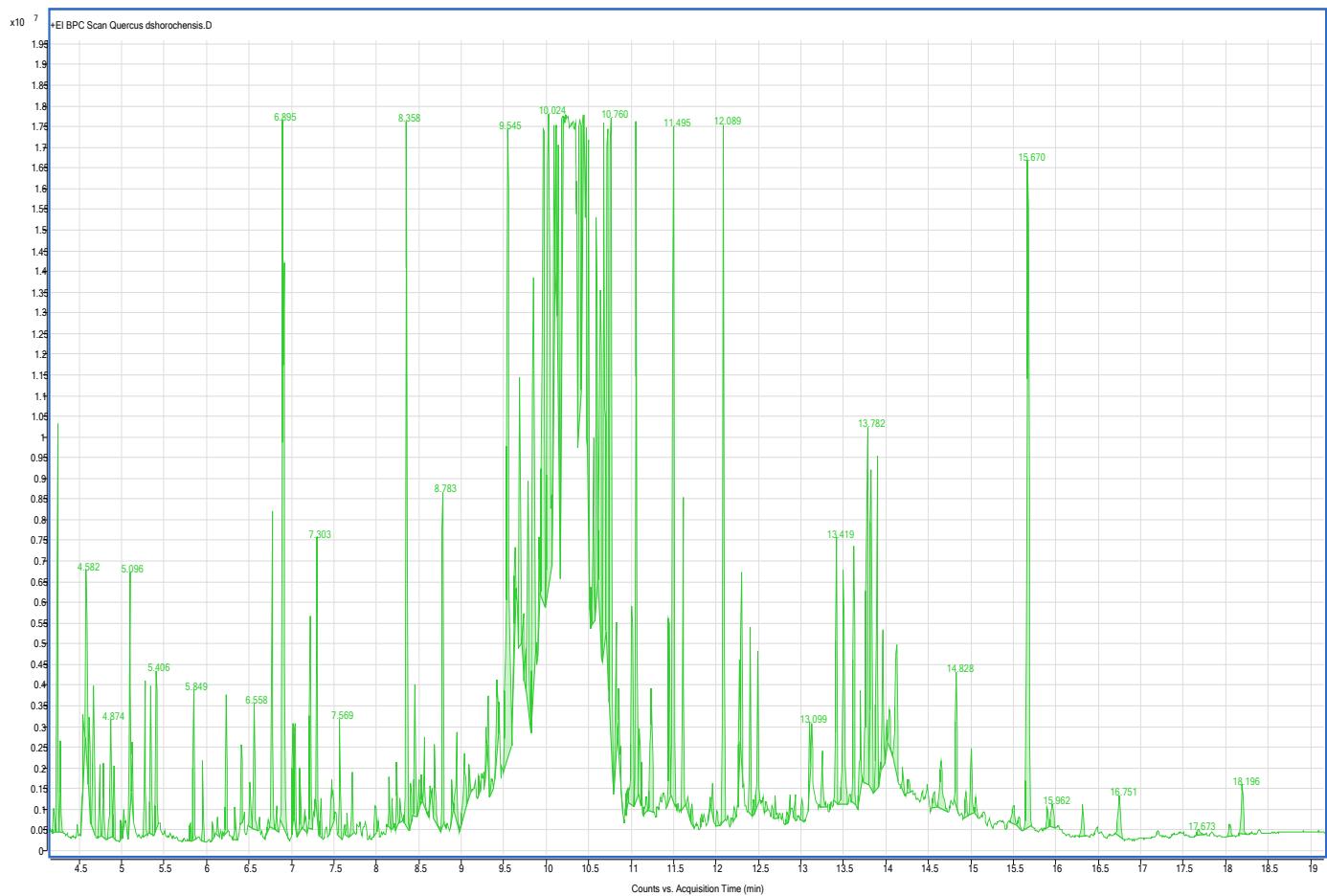
Results.

Content of Biologically Active

Compounds in the Studied Species:


GC-MS analysis of the leaves of the endemic species *Astragalus sommieri*, revealed the presence of 21 biologically active compounds. The identified compounds belonged to several chemical classes: Organic acids: malic acid; Fatty acids: oleic acid; Phenolic acids: benzoic acid; Sugars and sugar alcohols: xylose, ribitol, galactopyranoside, D-tagatofuranose, D-psicofuranose, D-lyxofuranose, D-pinitol, L-fucopyranose, dulcitol; Polyphenolic compounds: chromone derivatives; Coumarins: knidimin, archangelicin; Flavonoids: quercetin, kaempferol; Triterpenoids: lupeol, α -amyrin derivatives, ursolic acid; Steroidal compounds: campesterol, stigmasterol, β -sitosterol. The major dominant compounds were halfordine and β -sitosterol (Figure 1 and Table 1). These compounds are known for their potential pharmacological activity, including antioxidant, antimicrobial, and cytotoxic properties, which supports the relevance of *A. sommieri* in further biological studies.

GC-MS analysis of the endemic species *Quercus petraea* subsp. *dshorochensis* revealed the presence of 55 compounds. The identified compounds were categorized as follows: Carboxylic, fatty, and phenolic acids: threonine, citric acid, malic acid, shikimic acid, traumatic acid, quinic acid, gallic acid, palmitic acid; Sugars and sugar alcohols: anhydroglucitol, ribitol, arabinofuranose, allofuranose, fructose, galactopyranose, mannopyranose, tagatofuranose, rhamnose; Benzylquinol derivatives; Coumaroylquinic acid derivatives; Pentacyclic triterpenoids: friedelin; Polyphenolic compounds: catechin, epigallocatechin.


The dominant compounds were catechin, the triterpenoid friedelan-3-1, malic acid and citric acid (Figure 2 and Table 2). These bioactive compounds are known for their antioxidant, antimicrobial, and cytotoxic properties, indicating the pharmacological potential of this endemic oak species.

GC-MS analysis of the endemic species *Rhododendron smirnowii*, identified 41 compounds. The detected compounds were classified as follows: Carboxylic, organic, fatty, and phenolic acids: lactic acid, malic acid, succinic acid, valeric acid, quinic acid, citric acid, palmitic acid, lilonelin, jasmonic acid; Amino acids: L-leucine; Sugars: ribofuranose, galactopyranose; Benzodihydropyridine derivatives; Steroidal compounds: α -sitosterol. The dominant compound was the sesquiterpenoid ledol (Figure 3 and Table 3). These bioactive constituents suggest potential pharmacological activities, including antimicrobial and cytotoxic effects.

In the GC-MS analysis of *Rhododendron ungeri*, a total of 26 compounds were identified. These include carbon, various organic and fatty acids, and phenolic acids such as lactic, malic, quinic, citric, protocatechuic, lignoceric, gallic, palmitic, and linolenic acids. Among sugars, arabinol, fructofuranose, and d-erythritol were detected. Sesquiterpene compounds included

Figure 1. GC-MS chromatogram of *Astragalus sommieri* extract.

Figure 2. GC-MS chromatogram of *Quercus petraea* subsp. *dshorochensis* extract.

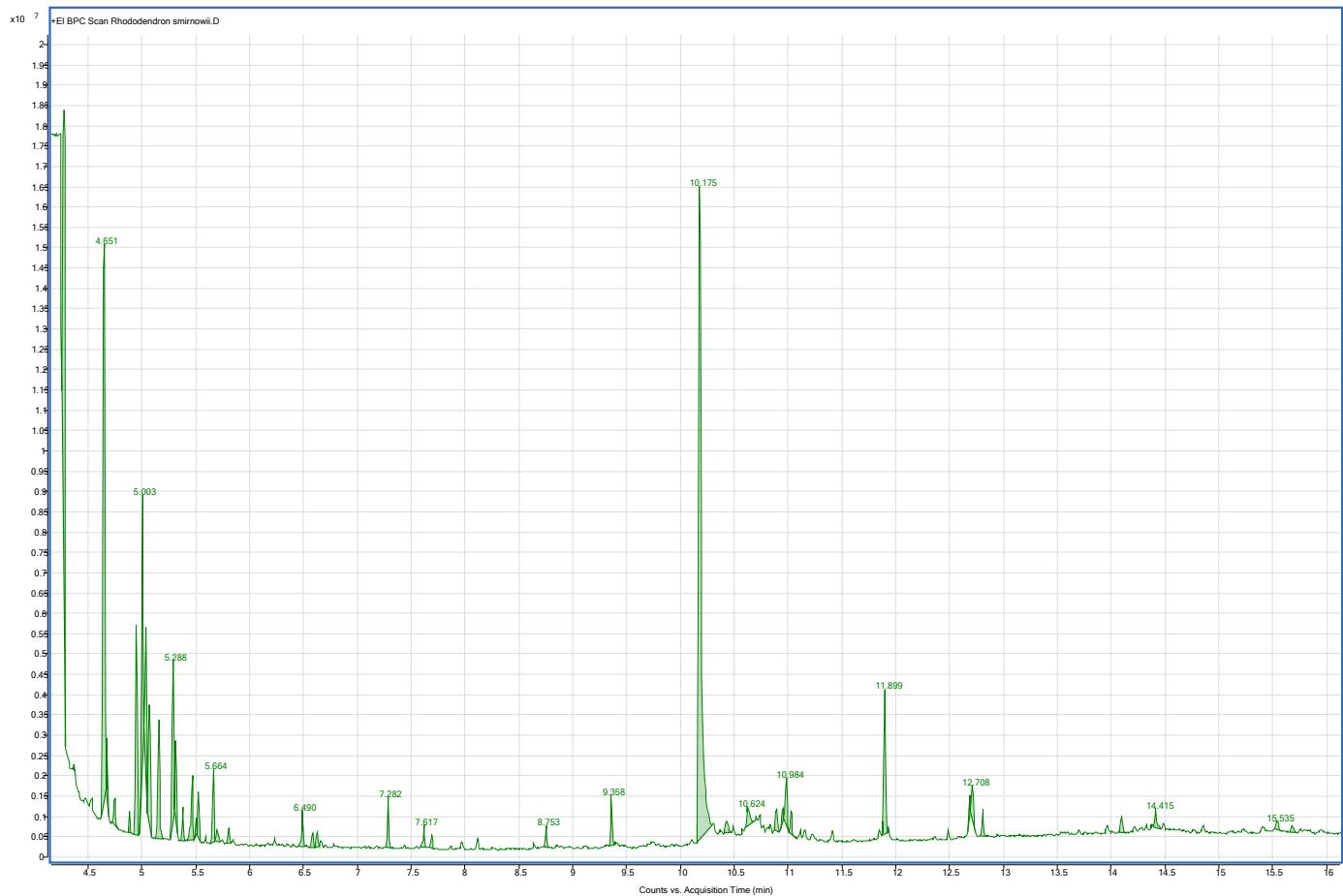


Figure 3. GC-MS chromatogram of *Rhododendron smirnovii* extract.

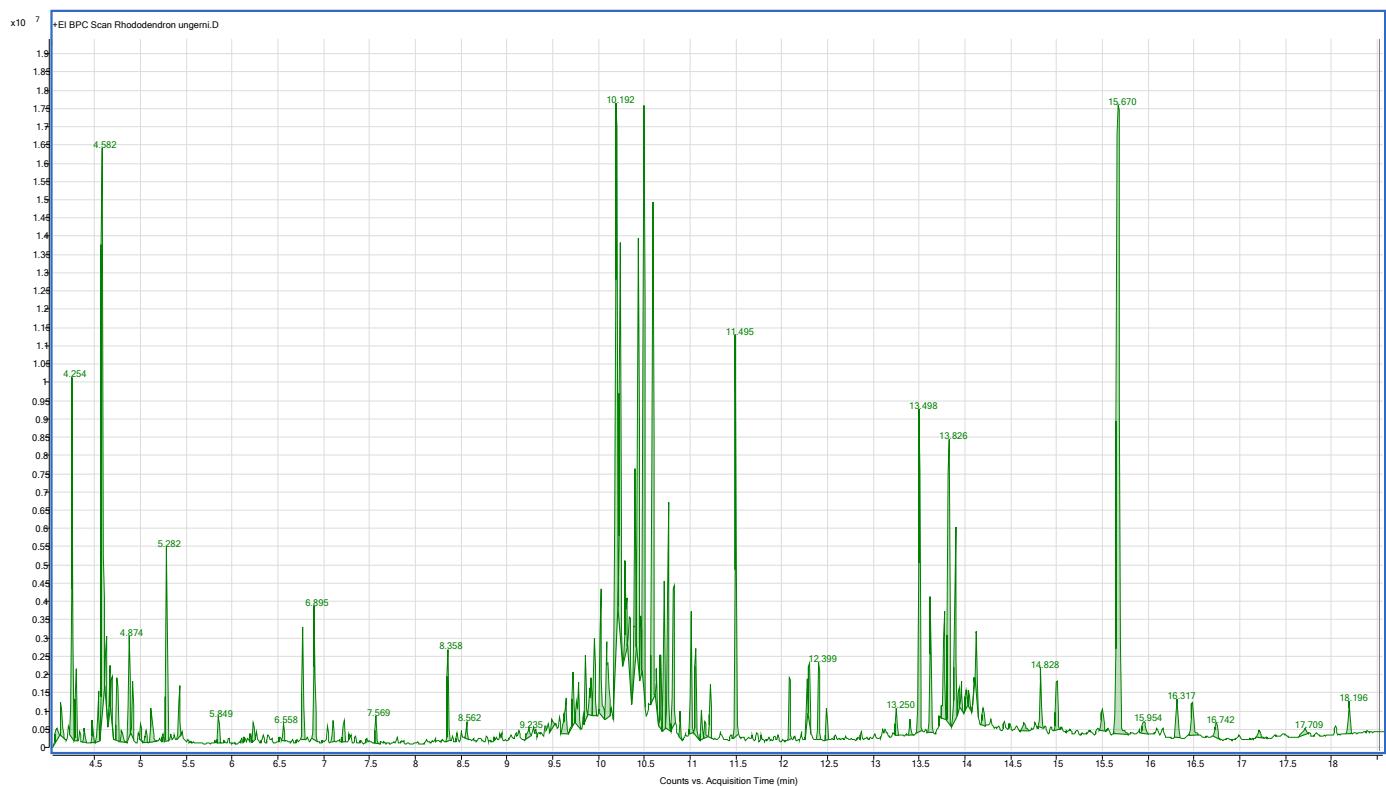


Figure 4. GC-MS chromatogram of *Rhododendron ungerii* extract.

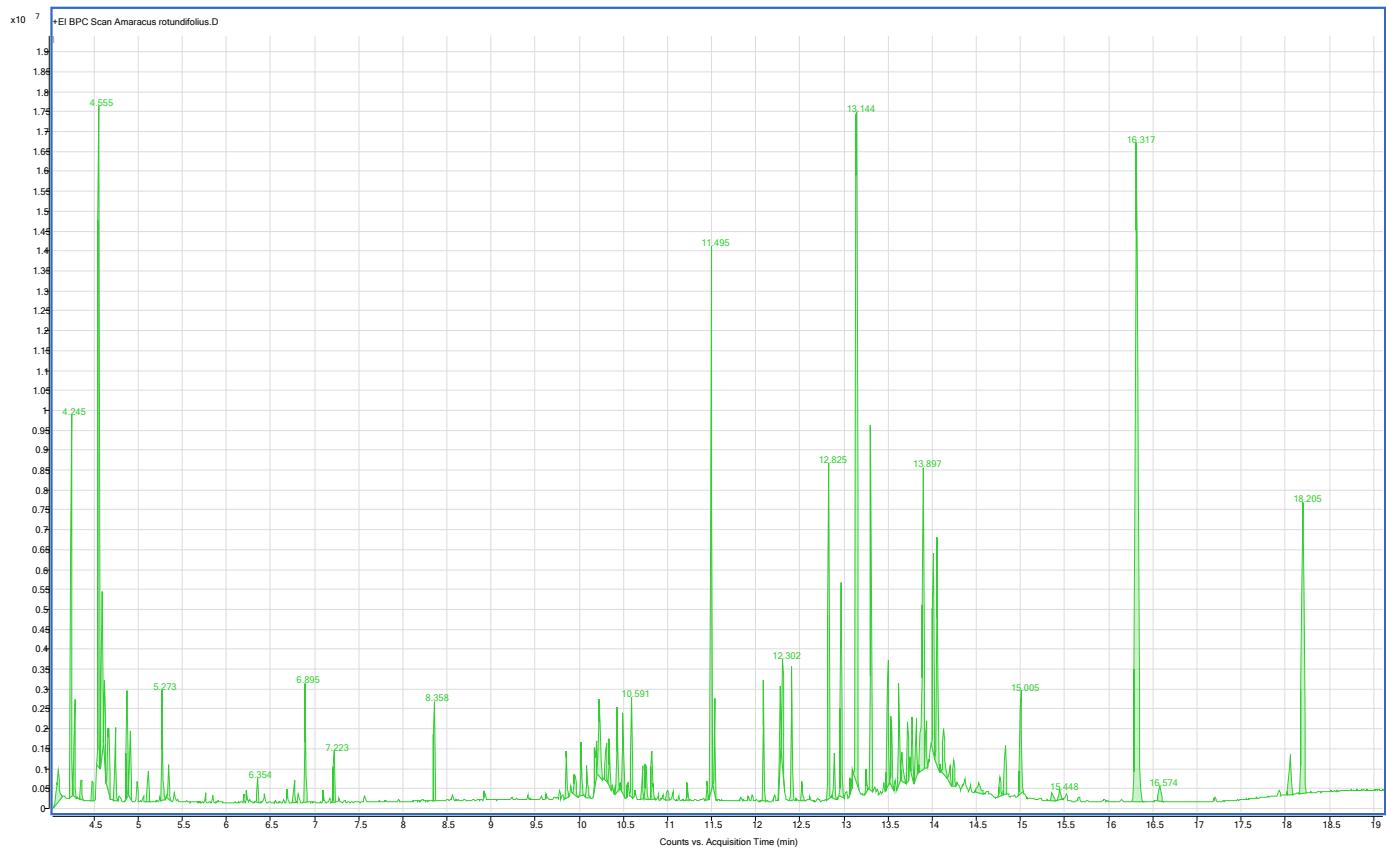


Figure 5. GC-MS chromatogram of *Amaracus rotundifolius* extract.

Table 1. Characterization of the major dominant compounds Halfordin; β -Sitosterol TMS.

Name	Formula	MW	Exact Mass	CAS	NIST	ID	Relative content (% Area)	RT (min)
Halfordin	C ₁₄ H ₁₂ O ₆	276	276.063389	18646-71-4	13349	218730	8.6	12.39
β -Sitosterol TMS	C ₃₂ H ₅₈ OSi	486	486.425694	2625-46-9	331677	101993	7.1	19.88

Table 2. Characterization of Catechin (2R-E)-, 5TMS; Friedelan-3-ol; Malic acid 3TMS, Citric acid 4TMS.

Name	Formula	MW	Exact Mass	CAS	NIST	ID	Relative content (% Ara)	RT
Malic acid 3TMS	C ₁₃ H ₃₀ O ₅ Si ₃	350	350.140104	38166-11-9	332853	38880	9.5	8.35
Citric acid 4TMS	C ₁₈ H ₄₀ O ₇ Si ₄	480	480.18511	14330-97-3	333874	191513	8.4	10.75
Catechine (2R-E)-5TMS	C ₃₀ H ₅₄ O ₆ Si ₅	650	650.276672	89267-68-5	250062	40232	9.2	15.67
Friedelan-3-ol	C ₃₀ H ₅₀ O	426	426.386166	559-74-0	412502	8644	5.9	18.19

Table 3. Characterization of Ledol.

Name	Formula	MW	Exact Mass	CAS	NIST	ID	Relative content (% Area)	RT
Ledol	C ₁₅ H ₂₆ O	222	222.198365	577-27-5	249593	1803	7.8	9.35

Table 4. Characterization of Friedo-18,19-secolup-19-ene, β -Sitosterol TMS, β -Amyrin TMS, α -Amyrin TMS.

Name	Formula	MW	Exact mass	GAS	NIST	ID	Relative content (% Area)	RT
Friedo-18,19-secolup-19-ene, 3,10-epoxy-, (3 β ,10 β)-	C ₃₀ H ₅₀ O	426	426.386166	35060-26-5	32298	33170	7.2	19.60
β -Sitosterol TMS	C ₃₂ H ₅₈ OSi	486	486.425694	2625-46-9	331677	101993	6.7	19.88
β -Amyrin TMS	C ₃₃ H ₅₈ OSi	498	498.425694	1721-67-1	374765	171601	8.3	20.22
α -Amyrin TMS	C ₃₃ H ₅₈ OSi	498	498.425694	1721-67-2	374766	171566	7.9	20.68

Table 5. Characterization of *trans*- β -Terpineol, Isopimaric acid TMS, Dehydroabietic acid TMS, Abietic acid TMS.

Name	Formula	MW	Exact mass	GAS	NIST	ID	Relative content (% Area)	RT
trans- β -Terpineol	C10H18O	154	154.135765	7299-40-3	140974	2508	5.4	8.35
Isopimaric acid TMS	C23H38O2Si	374	374.264107	21414-47-1	90665	39747	7.3	12.97
Dehydroabietic acid TMS	C23H36O2Si	372	372.248457	21414-49-3	79558	180083	8.7	19.26
Abietic acid TMS	C32H58OSi	486	486.425694	2625-46-9	331677	101993	7.9	19.88

Table 6. Determination of anti-fungal activity by agar well diffusion method.

Type of fungal strain	extraction method	<i>Astragalus sommieri</i>	<i>Quercus petraea subsp. dshorochensis</i>	<i>Rhododendr. smirnowii</i>	<i>Rhododendr. ungernii</i>	<i>Amaracus rotundifolius</i>
<i>Colletotrichum gloeosporioides</i>	aqueous extract 1:1	22.5 \pm 2	17 \pm 2	18.5 \pm 2.0	24.2 \pm 2.2	15.8 \pm 1.5
	aqueous extract 1:2	22.0 \pm 2	16.5 \pm 2	18.0 \pm 2.1	24.0 \pm 2.0	15.2 \pm 1.5
	aqueous extract 1:4	21.8 \pm 1,5	15.8 \pm 1.5	17.8 \pm 1.9	23.8 \pm 1.5	14.8 \pm 2.3
	40% ethanol extract 1:4	21.5 \pm 2	17 \pm 2	19.0 \pm 1.5	23.7 \pm 1.7	16.2 \pm 2.2
	40% ethanol extract 1:6	21.9 \pm 2	16.9 \pm 2	18.7 \pm 2,0	22.8 \pm 1.6	15.8 \pm 1.3
<i>Alternaria alternata</i>	aqueous extract 1:1	21.5 \pm 1,7	15.8 \pm 2	18.4 \pm 2,0	22.4 \pm 1.5	15.7 \pm 1.3
	aqueous extract 1:2	20.8 \pm 2	15.5 \pm 2	17.8 \pm 1,5	22.3 \pm 1.6	15.3 \pm 1.3
	aqueous extract 1:4	19.3 \pm 1,5	15.0 \pm 1,5	17.3 \pm 2,0	20.9 \pm 1.3	14.8 \pm 1,5
	40% ethanol extract 1:4	21.3 \pm 2	16.0 \pm 2	18.8 \pm 2,0	22.7 \pm 1.5	14.9 \pm 1.5
	40% ethanol extract 1:6	20.7 \pm 2	15.7 \pm 2	18.2 \pm 1,8	21.8 \pm 1.5	14.0 \pm 1.5
<i>Fusarium solani</i>	aqueous extract 1:1	20.8 \pm 2	15.8 \pm 1,7	17.8 \pm 1,8	22. 9 \pm 1.2	15.7 \pm 1.8
	aqueous extract 1:2	19.5 \pm 2	15.2 \pm 1,6	17.5 \pm 1.5	22.7 \pm 1.2	15.2 \pm 1.5
	aqueous extract 1:4	19.0 \pm 1,5	14.5 \pm 2,0	16.4 \pm 1,3	21.2 \pm 1.1	14.5 \pm 2
	40% ethanol extract 1:4	20. 2 \pm 1,5	17.8 \pm 2,1	17.0 \pm 1,5	23.5 \pm 1.5	14.9 \pm 1.3
	40% ethanol extract 1:6	19.8 \pm 1,5	17.3 \pm 2,0	16.5 \pm 1,5	22.9 \pm 1.5	14.0 \pm 1.8

Table 7. Evaluation of the cytotoxic activity of methanolic extracts of endemic plants of Adjara-Lazeti in an in vitro assay.

Cell line / Sample	A-549	WS-1
<i>Astragalus sommieri</i> Freyn.	55 \pm 3 μ g/ml	72 \pm 3 μ g/ml
<i>Quercus petraea subsp. Dshorochensis</i> c. Koch.	>150 μ g/ml	>150 μ g/ml
<i>Amaracus rotundifolius</i> (Boiss.)Briq.	>120 μ g/ml	>125 μ g/ml
<i>Rhododendron smirnowii</i> Trautv.	30 \pm 1 μ g/ml	8.5 \pm 0.8 μ g/ml
<i>Rhododendron ungernii</i> Trautv.	12.4 \pm 0.5 μ g/ml	120 \pm 31 μ g/ml
Etoposide	1.6 \pm 0.2 μ M	40 2 μ M

ledol, while triterpenoid compounds comprised lupeol, α -amyrin, β -amyrin derivatives, friedelan-3-ol, friedelin, and β -Sitosterol. Polyphenolic compounds identified included flavonoids and catechins, along with various steroidal compounds and others (Figure 4 and Table 4).

During the GC-MS analysis of *Amaracus rotundifolius*, 55 compounds were identified. These include carbon, various organic and fatty acids, and phenolic acids such as malic, hydroxybenzoic, shikimic, vanillic, protocatechuic, syringic, coumaric, ferulic, and linolenic acids. Pentanol derivatives were also detected. Among sugars, deoxyribose, ribofuranose, galactofuranose, and erythofuranose were found. Benzimidazole derivatives, lignans, and styrene derivatives were identified as well. Triterpenoid compounds included lupeol, α -amyrin, and β -amyrin derivatives, while steroidal compounds comprised stigmasterol and α -sitosterol (Figure 5 and Table 5).

Fungicidal Activity of Leaf Extracts of the Studied Specimens:

Quantitative data on the fungicidal activity, obtained using the methodology described above, are presented in the table

5. The table indicates the phytopathogenic strains used, the extraction method (aqueous and ethanolic extracts at different concentrations), and the inhibition zones statistically calculated based on three replicates.

Aqueous and 40% ethanolic leaf extracts were used for antifungal assays, as described in the extraction protocol.

Screening of aqueous and ethanolic extracts revealed that leaf extracts of *Rhododendron ungernii* and *Astragalus sommieri* exhibit pronounced fungicidal activity. A significantly strong antimicrobial effect was also observed in the leaf extracts of *Rhododendron smirnowii*.

Cytotoxic Activity of Leaf Extracts of the Studied Species:

As shown in table 6, the study evaluated the cytotoxic activity of methanolic extracts from five endemic plants of Adjara-Lazeti on human lung carcinoma cells (A-549) and normal skin fibroblasts (WS-1). Etoposide was used as a positive control for comparison.

Extracts of *Quercus petraea* subsp. *dshorochensis* and *Amaracus rotundifolius* did not exhibit significant activity

within the tested concentration range ($IC_{50} > 120\text{--}150 \mu\text{g}/\text{ml}$). The methanolic extract of *Astragalus sommieri* showed moderate cytotoxicity against A-549 cells ($IC_{50} = 55 \pm 3 \mu\text{g}/\text{ml}$), while the IC_{50} for WS-1 cells was slightly higher ($72 \pm 3 \mu\text{g}/\text{ml}$), indicating weak selectivity.

The extract of *Rhododendron smirnowii* exhibited the opposite trend: its activity against normal fibroblasts ($IC_{50} = 8.5 \pm 0.8 \mu\text{g}/\text{ml}$) was significantly higher than against cancer cells ($IC_{50} = 30 \pm 1 \mu\text{g}/\text{ml}$), indicating undesirable cytotoxicity toward normal cells.

The most pronounced and selective activity was observed for the extract of *Rhododendron ungernii*. The extract showed a low IC_{50} against A-549 cells ($12.4 \pm 0.5 \mu\text{g}/\text{ml}$), while the IC_{50} for WS-1 cells was $120 \pm 31 \mu\text{g}/\text{ml}$. The calculated selectivity index ($SI = 9.68$) was substantially higher than for the other samples, indicating preferential inhibition of cancer cells. Etoposide, used as a control, exhibited IC_{50} values of $1.6 \pm 0.2 \mu\text{M}$ for A-549 cells and $40.2 \mu\text{M}$ for WS-1 cells, consistent with its expected high efficacy and selectivity.

Discussion.

During the experimental study, the use of different extraction solvents was dictated by the specific objectives of the study. Methanol was selected for GC-MS profiling and cytotoxicity assays due to its efficiency in extracting phenolic compounds, flavonoids, and triterpenoids associated with anticancer activity. In contrast, aqueous and 40% ethanolic extracts were used for antifungal screening, as these solvents are commonly applied in antimicrobial assays and better reflect potential practical applications.

Based on the study of biologically active compounds in the investigated species, the following analysis can be made:

GC-MS analysis of *Astragalus sommieri*, an endemic species, revealed compounds that may possess biological activity, particularly antimicrobial effects. These include: phenolic acids such as benzoic acid, known for antibacterial and antifungal activity; polyphenolic compounds such as knidimin and archangelicin, which exhibit antibacterial activity against certain bacteria; flavonoids such as quercetin and kaempferol, showing strong antimicrobial activity against bacteria and fungi; triterpenoids including lupeol, α -amyrin, and ursolic acid, often demonstrating antibacterial and antifungal properties; and sterols such as β -sitosterol, campesterol, and stigmasterol, theoretically showing minor antimicrobial effects.

Compounds with cytotoxic and antitumor potential include polyphenols (knidimin, archangelicin), which have shown cytotoxic effects in various cancer cell lines; flavonoids (quercetin, kaempferol), known for antitumor and cytotoxic activities, inhibiting cell cycle progression and inducing apoptosis; triterpenoids (lupeol, α -amyrin, ursolic acid), exhibiting strong antitumor effects, particularly lupeol and ursolic acid; and sterols, where β -sitosterol occasionally shows pro-apoptotic/cytotoxic properties [11-30].

GC-MS analysis of *Quercus petraea* subsp. *dshorochensis* revealed the presence of benzylquinol, a compound with potent antimicrobial activity, particularly against bacteria and fungi. Antitumor effects were associated with phenolic acids such as cumaroilquinone and pentacyclic triterpenoids like friedelin,

known for antitumor and antimicrobial properties, especially in leukemia and skin cancer models. Polyphenolic compounds including catechin and epigallocatechin (EGC/EGCG) were also detected, exhibiting strong antioxidant, antimicrobial, and antitumor effects, promoting apoptosis in cancer cells and inhibiting replication of various bacteria and viruses [11-30].

GC-MS analysis of *Rhododendron smirnowii* identified biologically active compounds potentially characterized by antimicrobial and cytotoxic properties. These include phenolic compounds such as benzoic acid, with strong antimicrobial effects and reported antitumor activity; benzodihydropyridines, some of which exhibit antitumor and antimicrobial activity; the steroid compound α -sitosterol, known for antimicrobial activity against certain bacteria and fungi, with occasional in vitro antitumor effects; and sesquiterpenes such as ledol, which show anti-inflammatory, antimicrobial, and antitumor profiles and sometimes cytotoxic effects in cancer cell lines [11-30].

GC-MS analysis of *Rhododendron ungernii* revealed phenolic compounds with remarkable antimicrobial and antitumor properties, including protocatechuic acid (strong antioxidant, antimicrobial, and cytotoxic effects, stimulates apoptosis in cancer cells) and gallic acid (potent natural antimicrobial and antitumor phenol, active against ESBL-producing bacteria and multidrug-resistant strains, induces apoptosis, increases ROS, and suppresses proliferation in cancer cells). Fatty acids, such as α -linolenic acid (ω -3), exhibited antitumor potential by inhibiting metastasis, modulating membrane lipid composition, and moderate antimicrobial activity. Sesquiterpenes such as ledol, triterpenoids including lupeol (strong antitumor effect via inhibition of PI3K/AKT and Wnt/ β -catenin pathways, anti-inflammatory and antimicrobial activity), α - and β -amyrin (anti-inflammatory, antimicrobial, and cytotoxic effects, induces apoptosis in cancer cells), friedelin (antimicrobial and moderate antitumor activity), friedelanol (cytotoxic and antioxidant properties), and ursolic acid (strong natural antimicrobial, antiviral, and antitumor triterpene, induces apoptosis, inhibits NF- κ B pathways, suppresses angiogenesis) were also detected. Polyphenols such as flavonoids (quercetin, luteolin, apigenin, kaempferol, etc.) demonstrated strong antimicrobial and antitumor effects through multiple mechanisms, including ROS regulation, inhibition of mTOR and PI3K/AKT pathways, and suppression of angiogenesis. Catechins, including EGCG-type, exhibited pronounced cytotoxic and antimitastatic effects. Steroidal compounds, including phytosterols (β -sitosterol, etc.), showed moderate antitumor and antimicrobial activity [11-30].

GC-MS analysis of *Amaracus rotundifolius* identified biologically active compounds with documented antimicrobial and antitumor activity: potent compounds include lupeol, α - and β -amyrin, β -sitosterol, stigmasterol, protocatechuic acid, syringic acid, coumaric acid, ferulic acid, and vanillic acid; compounds with moderate antimicrobial and antitumor activity include linolenic acid, benzimidazole derivatives, lignans, and shikimic acid [11-30].

Screening of aqueous and ethanolic leaf extracts at various concentrations against phytopathogenic and human-pathogenic fungi revealed pronounced fungicidal activity in *Rhododendron ungernii* and *Astragalus sommieri* leaf extracts. A significant

antimicrobial effect was also observed in *Rhododendron smirnowii* extracts. Other species warrant further study.

Cytotoxicity studies showed that *Rhododendron ungernii* exhibited the most pronounced and selective activity, indicating its potential as a candidate for selective anticancer activity. *Astragalus sommieri* displayed moderate potential, whereas *Rhododendron smirnowii* may exert toxic effects on normal cells. The other tested species were less active under the experimental conditions.

A comparative analysis of the GC-MS profiles provides insight into the observed differences in biological activity.

Rhododendron ungernii exhibited a higher relative abundance of triterpenoids (ursolic acid, lupeol, α - and β -amyrin derivatives) and phenolic acids (gallic and protocatechuic acids), compounds widely associated with selective anticancer activity and apoptosis induction in cancer cells. Importantly, the abundance of highly toxic or non-selective constituents was comparatively lower, which may explain the high selectivity index (SI = 9.68) observed for this species.

In contrast, *Rhododendron smirnovii* was characterized by a notable presence of sesquiterpenes such as ledol. While ledol exhibits antimicrobial and anti-inflammatory activity, it has also been associated with nonspecific cytotoxic effects, which may account for the higher toxicity observed toward normal fibroblasts (WS-1 cells).

Conclusion.

As a result of our study, it was determined that the endemic species: *Astragalus sommieri*, *Quercus petraea* subsp. *Dshorochensis*, *Amaracus rotundifolius*, *Rhododendron smirnovii*, and *Rhododendron ungernii* contain a diverse spectrum of bioactive compounds, as revealed by GC-MS analyses, including phenolic acids, flavonoids, terpenoids, sterols, and others. The extract of *Rhododendron ungernii* exhibited the highest selective cytotoxicity against A-549 cells ($IC_{50} = 12.4 \pm 0.5 \mu\text{g/mL}$; SI = 9.68), while strong antifungal activity was observed in the extracts of *R. ungernii*, *Astragalus sommieri*, and *R. smirnovii*. These findings indicate the potential of these endemic species as sources of selective anticancer and antimicrobial agents and highlight the need for further in-depth investigation.

Acknowledgment.

The authors would like to thank Batumi Shota Rustaveli State University (BSU) for material support of the scientific research described in the article within the framework of the BSU targeted grant project, as well as the scientists of Tbilisi State Medical University for cooperation in the research, including intellectual and material-technical support.

REFERENCES

1. Manvelidze Z, Memiadze N, Kharazishvili D, et al. Species diversity of the Adjara floristic region (list of perennial plant species)" "Plants Science" Georgia. 2008:86.
2. Georgian National Academy of Sciences "Red Book of Georgia" Publishing House "Soviet Georgia", 1982.
3. Dmitrieva A.A. Identifier of plants of Adjara. Tbilisi "Metsniereba". 1990-a;1:327.
4. Bellusci G, Braglia R, Di Marco G, et al. Assessing molecular diversity among 87 species of the *Quercus* L. genus by RAPD markers. *Genet. Resour. Crop Evol.* 2023;70:2683-2694.
5. Burlacu E, Nisca A, Tanase C. A Comprehensive Review of Phytochemistry and Biological Activities of *Quercus* Species. *J. Forests.* 2020;11:904.
6. Beridze D. Bioecological and Pharmacognostic Evaluation of Endemic Species from Adzhara and Adzhara-Lazeti Region. Ph.D. Thesis, Batumi Shota Rustaveli State University, Batumi, Georgia, 2019.
7. Kandelaki M. Bioecological characteristics of introduced and local species of the *Rhododendron* genus (*Rhododendron* L.) in coastal conditions of Adjara Ph.D. Thesis, Batumi Shota Rustaveli State University, Batumi, Georgia, 2021.
8. Liu W, Wang L, Yu C, et al. Drug or Toxic? A Brief Understanding of the Edible Corolla of *Rhododendron decorum* Franch. by Bai Nationality with Comparative Metabolomics Analysis. *Metabolites.* 2024;14:484.
9. Sarkar SL, Saha P, Sultana N. In vitro evaluation of phytochemical components and antimicrobial activity of the methanolic extract of *Tridax procumbens* L. against pathogenic microorganisms. *Journal of Pharmacognosy and Phytochemistry.* 2016;5:42-46.
10. Gizaw A, Marami LM, Teshome I, et al. Phytochemical Screening and In Vitro Antifungal Activity of Selected Medicinal Plants against *Candida albicans* and *Aspergillus niger* in West Shewa Zone, Ethiopia. *Adv Pharmacol Pharm Sci.* 2022;2022:3299146.
11. García-Carrillo. Quercetin inhibits quorum sensing and biofilm formation in multidrug-resistant *Pseudomonas aeruginosa* and MRSA. *Antibiotics.* 2024;13:523.
12. Alzahrani A. Cytotoxic effects of quercetin on cancer cell lines: An in-vitro evaluation. *Turkish Journal of Pharmaceutical Sciences.* 2024;21:123-130.
13. Li X, Sun J, Guo S, et al. Antimicrobial activity of phytosterols including β -sitosterol and stigmasterol. *Journal of Applied Microbiology.* 2021;131:1432-1441.
14. Lambert J.D, Elias R.J. The Anticancer Effects of Green Tea Catechins. *Journal of Nutrition.* 2010;140:2242-2247.
15. Zhao B. Catechin inhibits cancer cell proliferation and metastasis via modulation of apoptotic pathways. *Frontiers in Pharmacology.* 2022;13:876543.
16. Zhang L, Zheng Y. Green tea catechins as anticancer agents: Mechanisms and clinical implications. *Phytomedicine.* 2021;92:153758.
17. Singh B.N, Shankar S, Srivastava SK, et al. Green tea catechin, EGCG, induces apoptosis and inhibits cancer progression. *Cancer Letters.* 2011;324:1-8.
18. Kumar P. Friedelin exhibits potent anticancer activity via induction of apoptosis in breast cancer cells. *Phytomedicine.* 2021;85:153554.
19. Ivanova V, Chochkova M, Najdenski H, et al. Chemical composition and cytotoxic activities of essential oils rich in ledol from *Rhododendron* species. *Journal of Essential Oil Research.* 2020;32:433-440.
20. Li Z. Toxicity and anticancer properties of ledol-type sesquiterpenes from *Rhododendron*. *Natural Product Research.* 2022;36:6321-6329.

21. Nguyen TLA, Bhattacharya D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. *Molecules*. 2022;27:2494.

22. Qi W, Qi W, Xiong D, et al. Quercetin: Its Antioxidant Mechanism, Antibacterial Properties and Potential Application in Prevention and Control of Toxipathy. *Molecules*. 2022;27:6545.

23. Periferakis A. Kaempferol: A Review of Current Evidence of Its Antiviral Potential. *Int J Mol Sci*. 2023;24:16299.

24. Luo X, Li J, Cen Z, et al. Exploring the therapeutic potential of lupeol: A review of its mechanisms, clinical applications, and advances in bioavailability enhancement. *Food Chem Toxicol*. 2025;196:115193.

25. Chauhan A, Pathak VM, Yadav M, et al. Role of ursolic acid in preventing gastrointestinal cancer. *Frontiers in Pharmacology*. 2024;15:1405497.

26. Issa HM, Mohammed DH, et al. A critical review on the journey of benzoic acid in the pharmaceutical industry from manufacturing processes through various uses to disposal: An environmental perspective. *Environ Anal Health Toxicol*. 2025;40:e2025007.

27. Bruni R, Barreca D, Protti M, et al. Botanical Sources, Chemistry, Analysis, and Biological Activity of Furanocoumarins of Pharmaceutical Interest. *Molecules*. 2019;24:2163.

28. Bakuridze A, Jokhadze M, Metreveli M, et al. Plant Secondary Metabolites as a Factor of Longevity in Georgia: Chemical and Biological Evaluation of some Endemic Dietary Plants. Materials of 31st International Conference of FFC, Yerevan, Armenia, September 29-30, October. 2023:340-342.

29. Metreveli M, Bakuridze A, Kodanovi L, et al. Studying the bioecological peculiarities and the content of biologically active compounds of Iris pallida Lam., Introduced by green technology. *Conference Proceedings of the SGEM Vienna Green*. 2022;22:309-317.

30. Narsezashvili M, Berashvili D, Metreveli M, et al. Chemical composition and biological activity of Angelica L. species (In Georgian) *Georgian Scientists*. 2023;5:112-129.

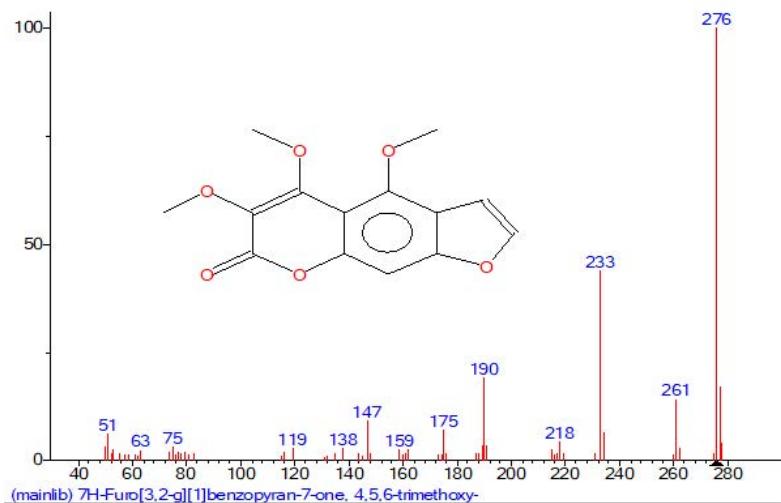


Figure S1. Mass spectrum of Halfordin

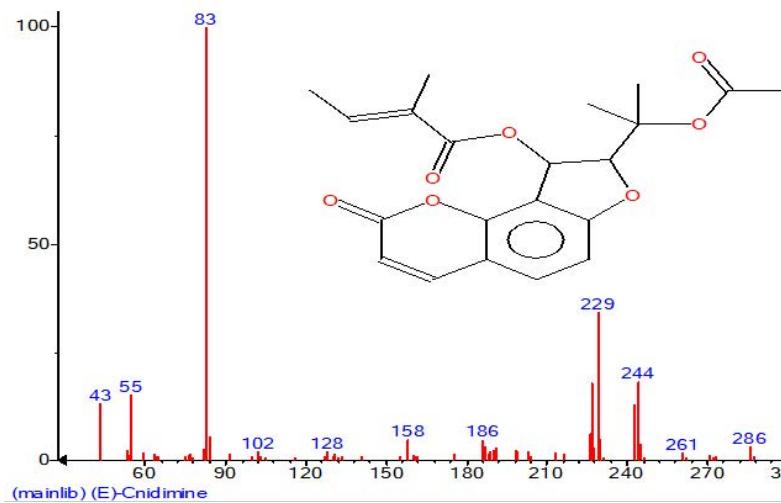


Figure S2. Mass spectrum of E-Knidimine

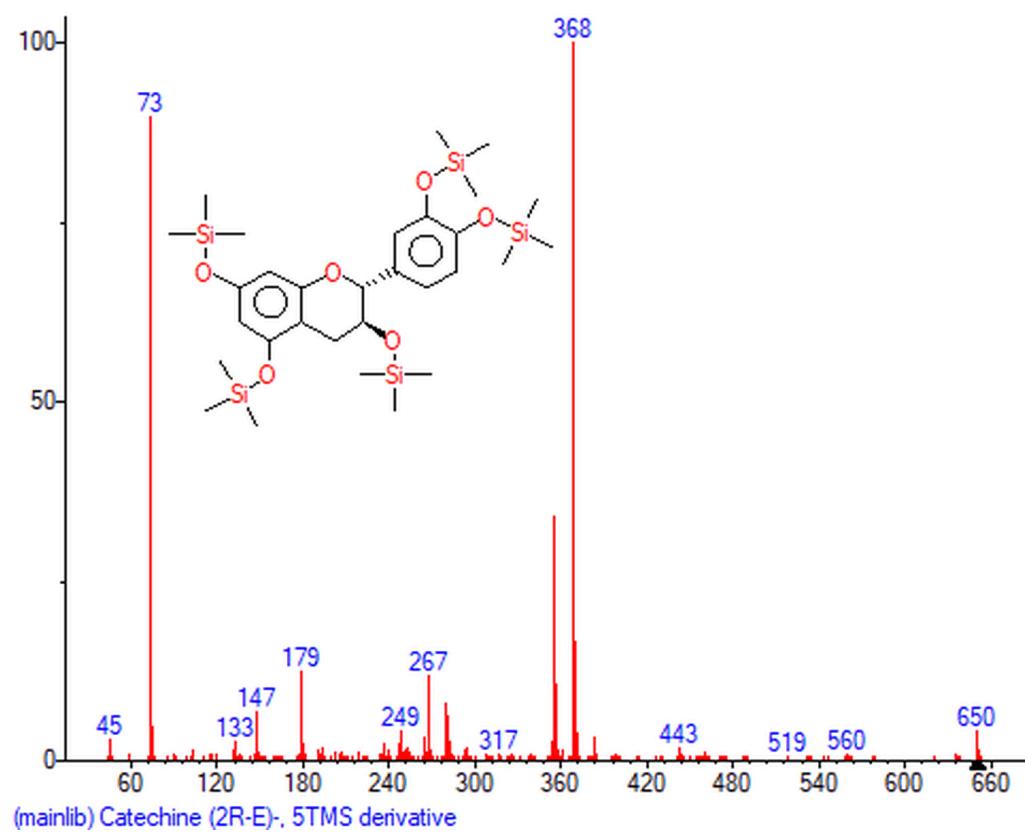


Figure S3. Mass spectrum of Catechin (2R-E)-, 5TMS

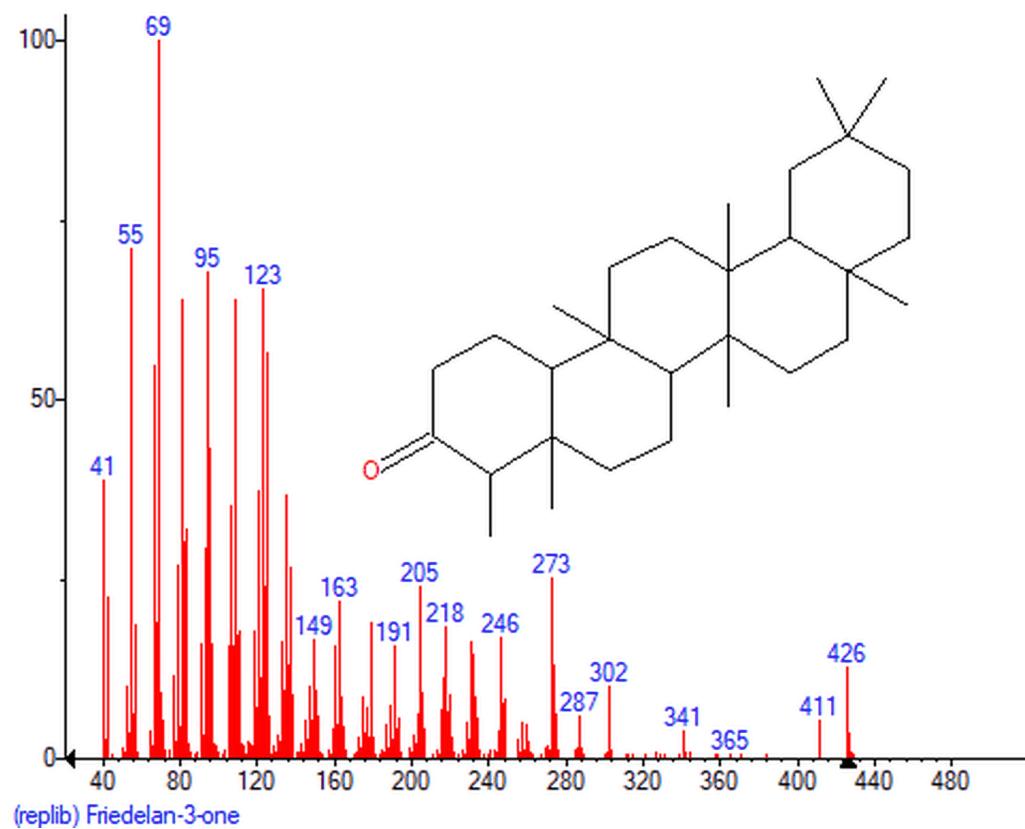


Figure S4. Mass spectrum of Friedelan-3-ol

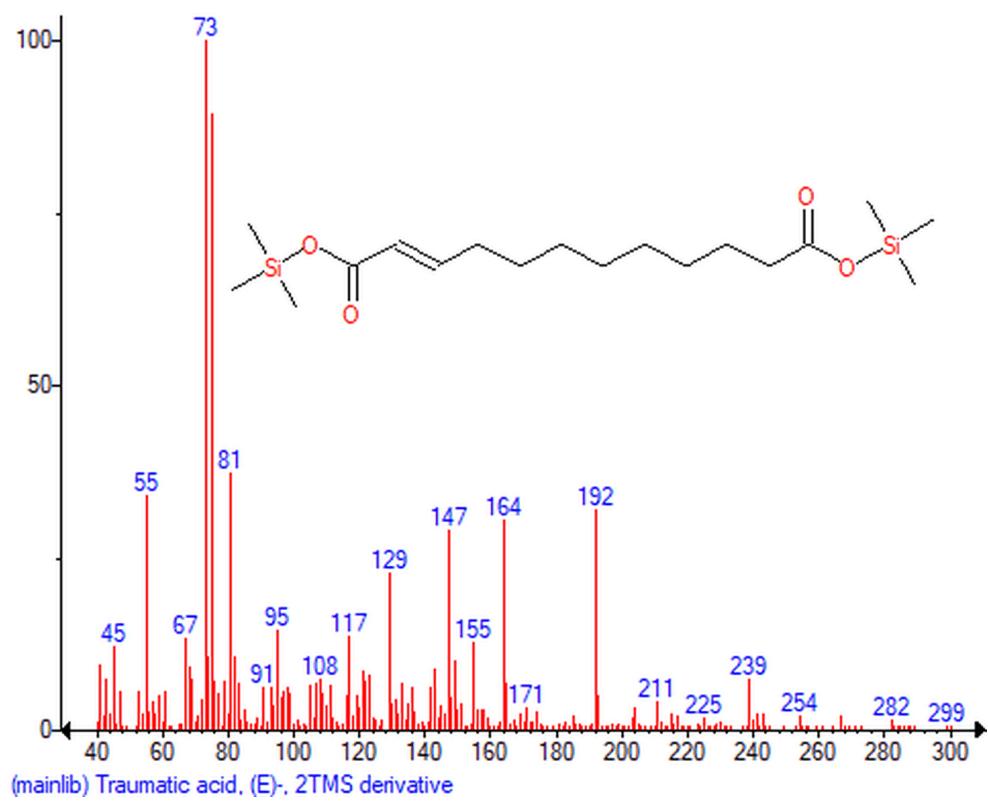


Figure S5. Mass spectrum of Traumatic acid, (E)-, 2TMS

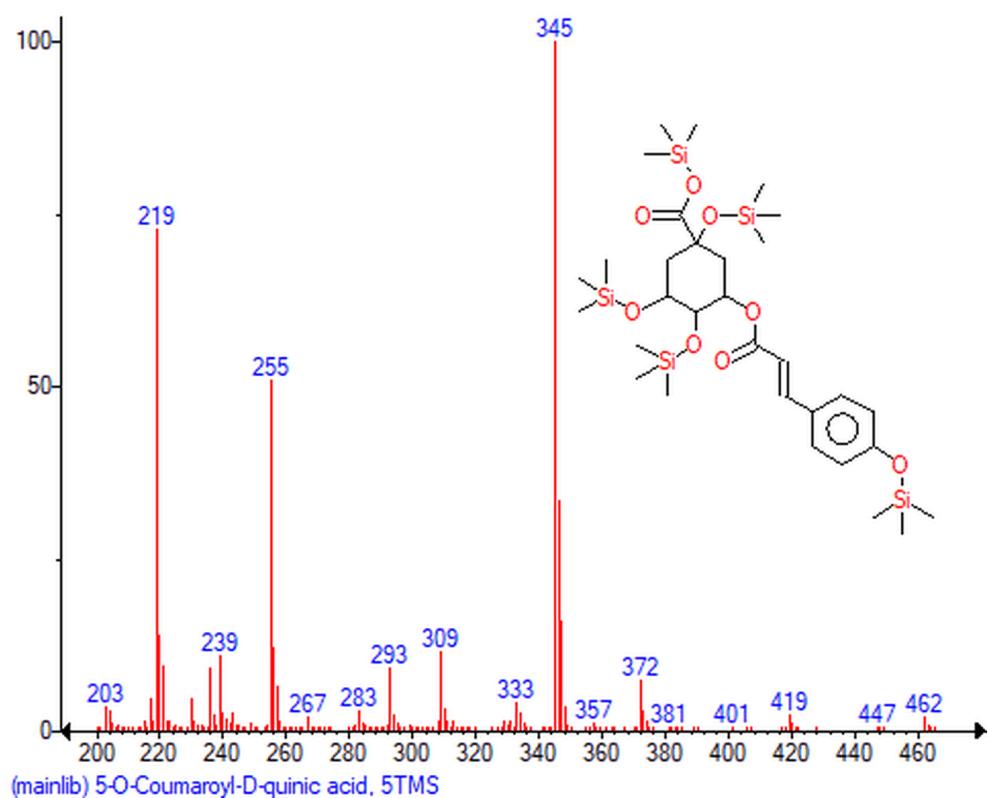
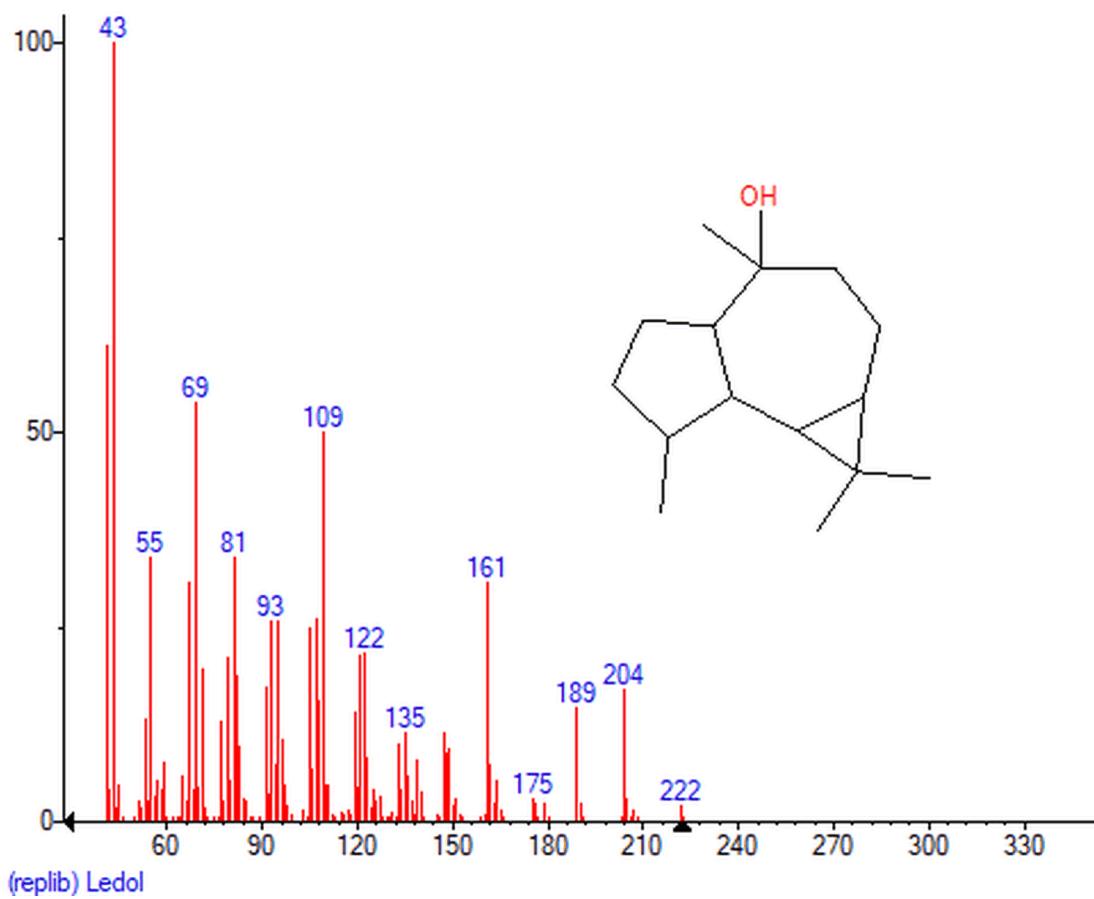



Figure S6. Mass spectrum of 5-O-Coumaroyl-D-quinic acid, 5TMS

Figure S7. Mass spectrum of Ledol

Figure S8. Mass spectrum of Arbutin, 4TMS

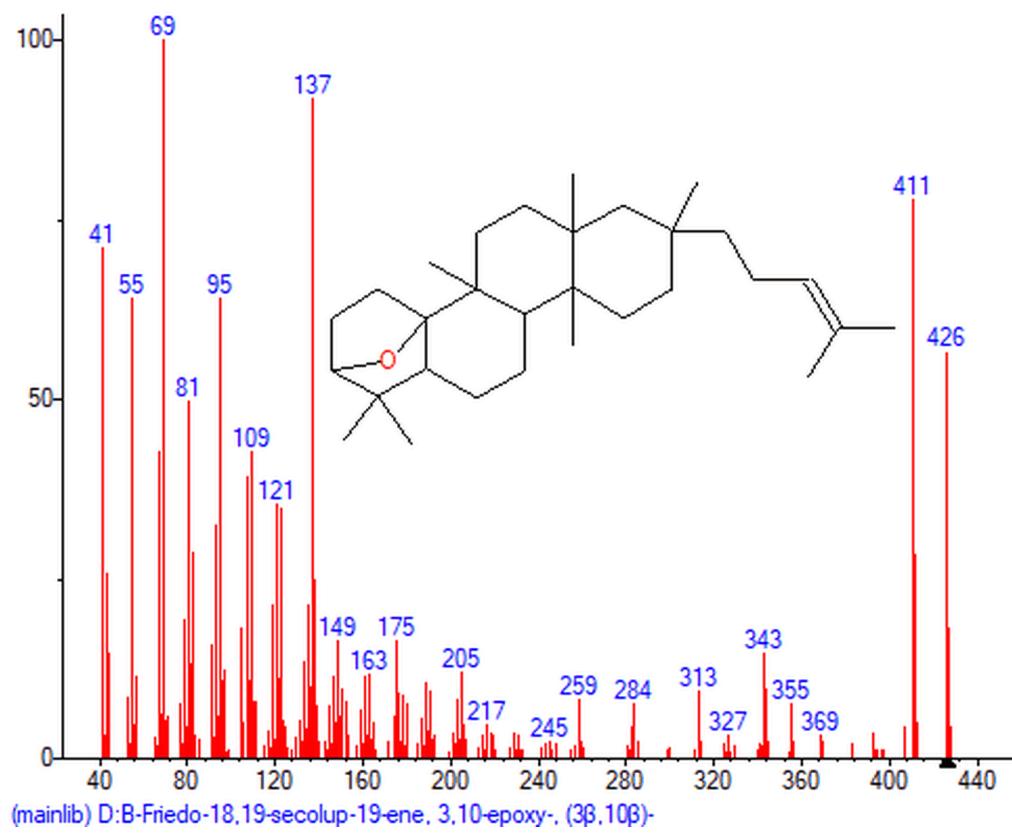


Figure S9. Mass spectrum of Friedo-18,19-secolup-19-ene, 3,10-epoxy-, (3 β ,10 β)

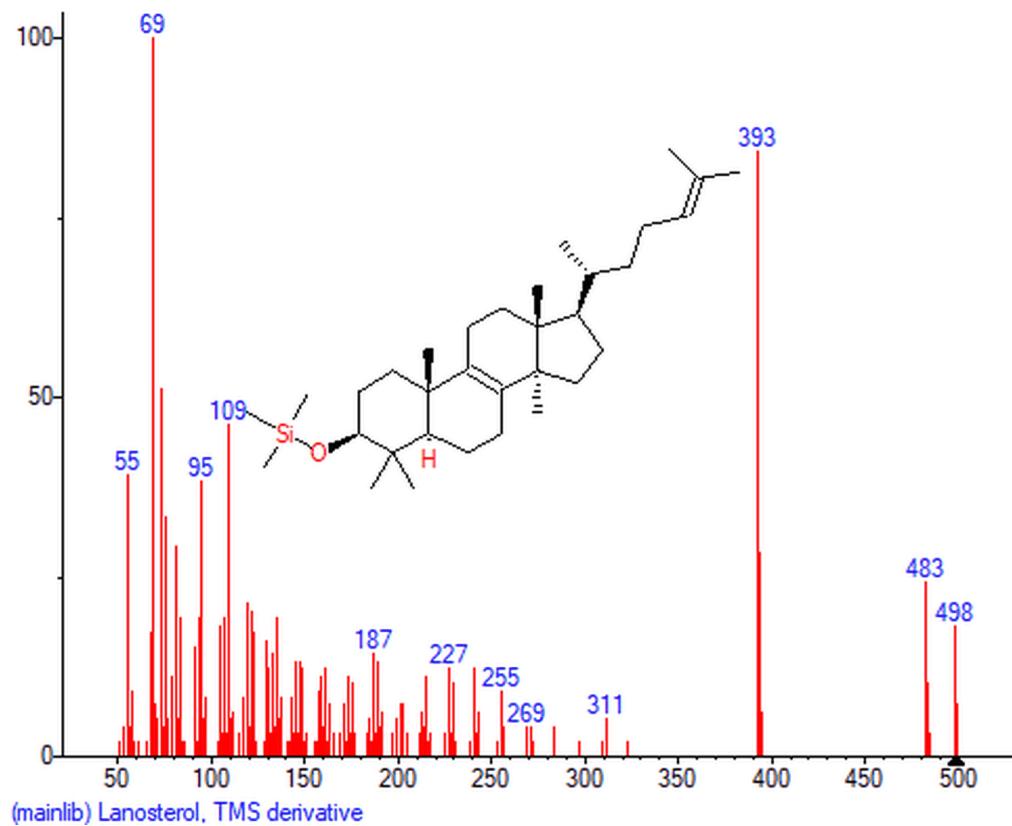


Figure S10. Mass spectrum of Lanosterol TMS

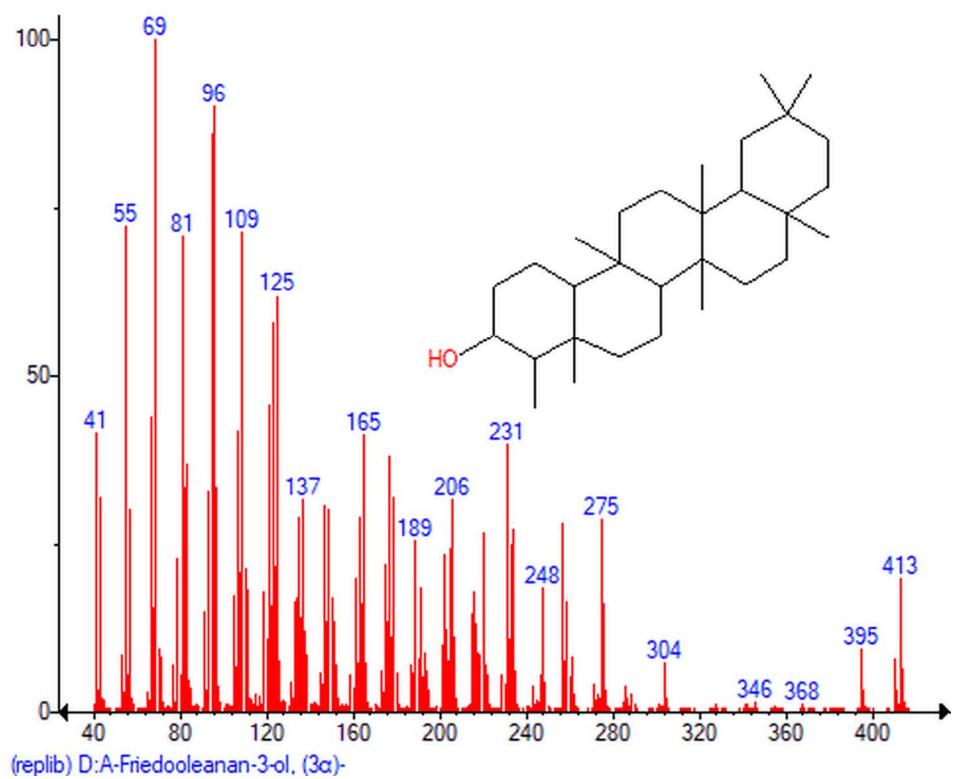


Figure S11. Mass spectrum of Friedolan-3-ol, (3a)

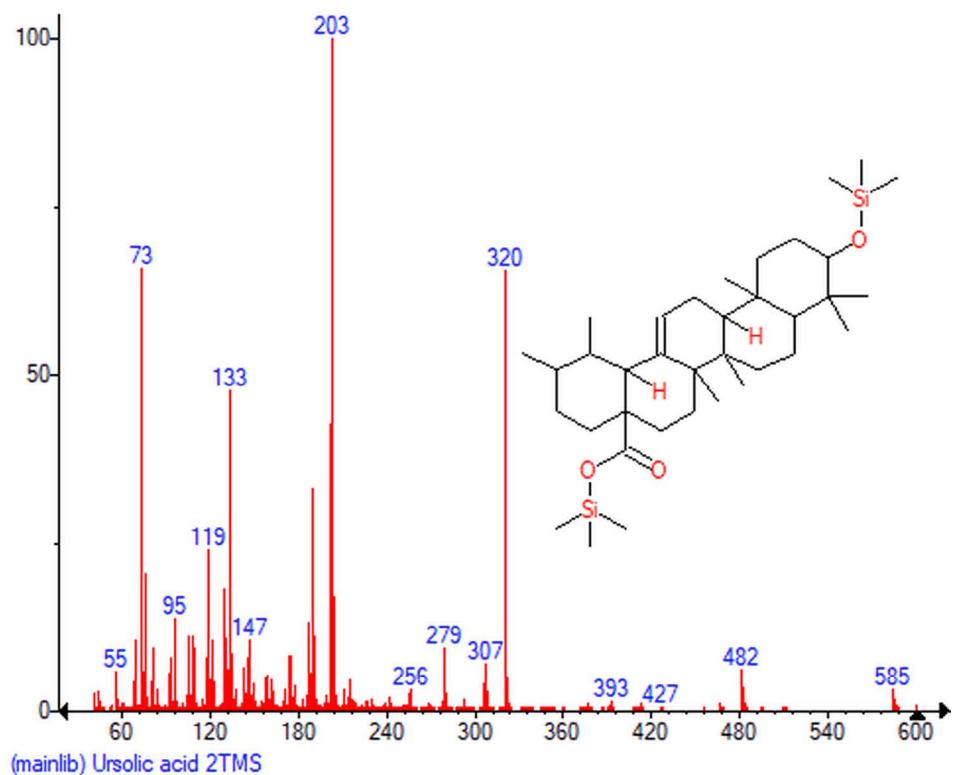
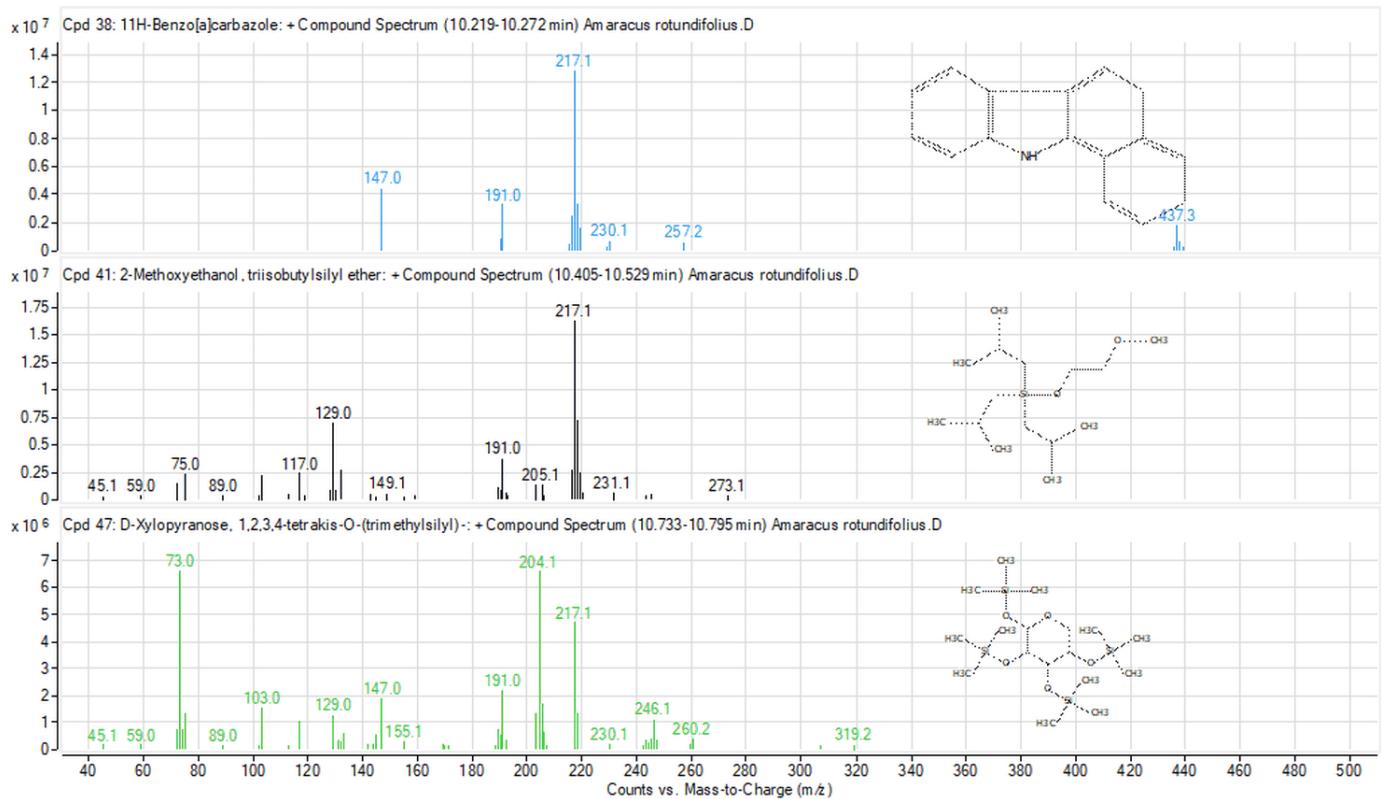



Figure S12. Mass spectrum of Ursolic acid, 2TMS

Figure S13. Mass spectra of selected compounds from the leaf extract of *Amaracus rotundifolius*