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K CBEAEHHUIO ABTOPOB!
[Ipu HampaBIEeHUY CTAaTbH B PEAAKITUIO HEOOXOIUMO COOIONATh CISAYIONINE TIPABHIIIA;

1. CraTps nomkHa OBITH IPEJCTaBICHA B IBYX SK3EMIUIIPAX, HA PYCCKOM HMJIM aHTITUHACKOM SI3bI-
Kax, HaTrleyaTaHHas yepe3 MoJITopa HHTepBaJjia Ha OIHOI CTOPOHE CTAHIAPTHOIO JIUCTA € INMPHHOI
JIEBOTO NOJIsI B TPHM caHTHMeTpa. Mcnonb3yemblil KOMIIBIOTEPHBII WPUQT U1 TEKCTa Ha PYCCKOM U
aHnuickoM s3bikax - Times New Roman (Kupuiuna), 115 TeKcTa Ha TPy3UHCKOM S3BIKE CIIEAYeT
ucnoip3oBath AcadNusx. Pasmep mpudra - 12. K pykonrcu, HaneyaTaHHOW Ha KOMITBIOTEPE, JTODKEH
o5ITh IprtoskeH CD co crarbeit.

2. Pa3Mep craTbu TOTKEH OBITH HE MEHEe NeCsTH 1 He OoJiee 1BaALATH CTPAHUI] MAITHOIINCH,
BKJIIOYAsl yKa3areJlb JINTepaTypsl U Pe3loMe Ha aHIJIMIICKOM, PYCCKOM U IPYy3HHCKOM SI3bIKaX.

3. B crarbe 10KHBI OBITH OCBEIICHBI AKTyaIbHOCTh JAHHOTO MaTepHalla, METOIBI U PE3YIIbTaThI
UCCIIeIOBaHUs U X 00CYyKACHHE.

[Ipu npencTaBiIeHNHN B IIeYaTh HAYYHBIX SKCIIEPUMEHTAIBHBIX PA0OT aBTOPHI JOJIKHBI YKa3bIBATH
BHUJl U KOJMYECTBO SKCIIEPUMEHTANBHBIX KUBOTHBIX, IPUMEHSBIINECS METOABl 00e300MMBaHUS U
YCBHIJICHHUS (B XOJI€ OCTPBIX OIIBITOB).

4. K crarbe JOIKHBI OBITH MIPUIIOMKEHBI KpaTKoe (Ha MOJICTPAaHUIIBI) Pe3OMe Ha aHIIIUICKOM,
PYCCKOM M IT'PY3HHCKOM $I3bIKax (BK/IIOYAIOLIEE CIELYOLINE pa3aesbl: Liedb UCCIeI0BaHNs, MaTepHual U
METOJIBI, PE3YJILTATHI M 3aKIIFOUSHHE) U CIIUCOK KITtoueBBIX cioB (key words).

5. Tabnunp! HEOOXOIUMO NPENCTABIATE B Ie4aTHOH hopme. DoTokonuu He npuHUMaroTcs. Bee
nu¢poBbie, HTOTOBbIE H NPOLIEHTHbIE JaHHbIE B Ta0JIMIaX J0JIKHbI COOTBETCTBOBATH TAKOBBIM B
TeKcTe cTaThbU. Tabiuibl U rpaduKu TOJKHBI OBITH 03aryIaBIICHBI.

6. dotorpadun AOIKHBI OBITH KOHTPACTHBIMHU, (POTOKOIHHU C PEHTTEHOTPAMM - B IO3UTUBHOM
n300paxeHuH. PUCYyHKH, yepTeXu U IuarpaMmbl clIeoyeT 03ariaBUTh, IPOHYMEPOBATh U BCTABUTH B
COOTBeTCTBYIOIIEe MecTo TekcTa B tiff opmare.

B noanucsix k MukpogotorpadgusaM cieayeT yKa3plBaTh CTEICHb yBEIMUCHUS Yepe3 OKYISP HITH
00BEKTUB U METOJ] OKPACKU WJIM UMIIPETHALIMH CPE30B.

7. ®aMUIUU OTEYECTBEHHBIX aBTOPOB MIPUBOJAATCS B OPUTHHAIBHON TPAHCKPUIILIUH.

8. I[Ipu opopmnennu u HampaBneHun crared B xypHanm MHI mpocum aBTOpOB cobmronars
NpaBUIIa, U3JI0KEHHBIE B « EMUHBIX TpeOOBaHUSIX K PYKOMHUCSM, IPEACTABISIEMBIM B OMOMEIUIIMHCKHUE
JKypHAJIbD», TPUHATHIX MeXIyHapOAHBIM KOMHUTETOM PEIAaKTOPOB MEAMLMHCKUX KYpHAJIOB -
http://www.spinesurgery.ru/files/publish.pdf u http://www.nlm.nih.gov/bsd/uniform_requirements.html
B koHIIe Kax 101 OPUTHHATIBHOM CTaThU MPUBOAUTCA OnOIHOrpadguyeckuii cnucok. B cnmncok nurepa-
TYPBI BKJIFOYAIOTCSl BCE MaTepHalibl, HA KOTOPBbIE UMEIOTCS CCBUIKU B TeKcTe. CIHUCOK COCTaBIAETCs B
andaBUTHOM MOpsAKe U HymMepyeTcs. JIutepaTypHblii HCTOYHMK NPUBOAUTCS Ha sI3bIKE OpUrMHaia. B
CIMCKE JINTEPATyPhl CHavYajia IPUBOIATCS PabOThI, HAMCAHHBIE 3HAKaMU TPY3MHCKOTO andaBuTa, 3aTeM
Kupwuien u naruHuneidl. CChUIKM Ha IUTHUPYEMble pabOThl B TEKCTE CTAaTbH JAIOTCS B KBaIpPaTHBIX
CKOOKax B BUJI€ HOMEPA, COOTBETCTBYIOLIETO HOMEPY JaHHOH pabOoThI B CIIMCKE TUTEPaTypbl. bonbmmH-
CTBO IIUTHPOBAHHBIX UCTOYHUKOB JOJKHBI OBITH 3a IMOCTIEAHNUE S5-7 JIET.

9. ns momydeHus MpaBa Ha MyONMKAIMIO CTaThs OJDKHA MMETh OT PYKOBOIUTENSI pabOTHI
WIN YUPEXKJCHUS BU3Y U CONPOBOIUTEIHHOE OTHOLLICHNUE, HAIMCAHHBIC WJIM HAlledaTaHHbIE Ha OJIaHKe
Y 3aBEPEHHBIE MOJIHCHIO U NIEYATHIO.

10. B koHIe cTaThU NOJKHBI OBITH MOAMHCH BCEX aBTOPOB, MOJHOCTBHIO MPUBEAEHBI UX
(amMuInM, UIMEHa U OTYECTBA, YKa3aHbl CIIy>KeOHBIN M AOMAIIHUI HOMEpa TeJIe(OHOB U agpeca MM
uHble koopAuHaThl. KomuuecTBo aBTOPOB (COABTOPOB) HE NOHKHO MPEBBIMIATH IISATH YEJIOBEK.

11. Penakuus ocraBisiet 3a cO00i MpaBo COKpaIaTh ¥ HCIPaBIATh cTarhi. Koppekrypa aBropam
HE BBICBUIAETCS, BCS paboTa U CBEpKa IPOBOAUTCS 110 aBTOPCKOMY OPHTHHAILY.

12. HemomycTuMoO HampaBiieHHE B pelaklMIo padoT, MpeICTaBICHHBIX K MeYaTH B MHBIX
M3/1aTeNbCTBAX WIIM OMYOJIMKOBAHHBIX B APYTHX U3JAHUSX.

Hpﬂ HApYHNIEHUH YKa3aHHBIX IPABUJI CTATbU HE PAaCCMAaTPUBAIOTCH.
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Please note, materials submitted to the Editorial Office Staff are supposed to meet the following requirements:

1. Articles must be provided with a double copy, in English or Russian languages and typed or
compu-ter-printed on a single side of standard typing paper, with the left margin of 3 centimeters width,
and 1.5 spacing between the lines, typeface - Times New Roman (Cyrillic), print size - 12 (referring to
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7. Please indicate last names, first and middle initials of the native authors, present names and initials
of the foreign authors in the transcription of the original language, enclose in parenthesis corresponding
number under which the author is listed in the reference materials.

8. Please follow guidance offered to authors by The International Committee of Medical Journal
Editors guidance in its Uniform Requirements for Manuscripts Submitted to Biomedical Journals publica-
tion available online at: http://www.nlm.nih.gov/bsd/uniform_requirements.html
http://www.icmje.org/urm_full.pdf
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of the article under the title “References”. All references cited in the text must be listed. The list of refer-
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in square brackets] and in the reference list and numbers are repeated throughout the text as needed. The
bibliographic description is given in the language of publication (citations in Georgian script are followed
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9. To obtain the rights of publication articles must be accompanied by a visa from the project in-
structor or the establishment, where the work has been performed, and a reference letter, both written or
typed on a special signed form, certified by a stamp or a seal.

10. Articles must be signed by all of the authors at the end, and they must be provided with a list of full
names, office and home phone numbers and addresses or other non-office locations where the authors could be
reached. The number of the authors (co-authors) must not exceed the limit of 5 people.

11. Editorial Staff reserves the rights to cut down in size and correct the articles. Proof-sheets are
not sent out to the authors. The entire editorial and collation work is performed according to the author’s
original text.

12. Sending in the works that have already been assigned to the press by other Editorial Staffs or
have been printed by other publishers is not permissible.

Articles that Fail to Meet the Aforementioned
Requirements are not Assigned to be Reviewed.
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Abstract.

Parkinson disease (PD) is a common neurodegenerative
condition. It affects the central nervous system, and it impairs
cognitive processes, motor skills and other functions. The aim
of this study was to determine the synaptic processes in medial
Entorhinal cortex (mENT) under High frequency stimulation of
Basolateral Amygdala on the model of Parkinson's disease under
the influence of Hydrocortisone. Rotenone is involved in the
degeneration of dopaminergic neurons. We investigated whether
hydrocortison protects against rotenone-induced dopaminergic
neurotoxicity in a rat model by in vivo electrical recording from
medial Entorhinal cortex. Hydrocortison significantly improved
electrical activity of neurons in the mENT of rotenone-induced
PD model rats.

Key words. Parkinson's disease, synaptic processes, the
entorhinal cortex, basolateral amygdala, hydrocortisone.

Introduction.

Parkinson’s disease (PD) is a common disease facing many
older people across the world. It affects the central nervous
system, and it impairs cognitive processes, motor skills and
other functions.

In addition to the classic motor signs and symptoms, PD is
characterized by neuropsychological and emotional deficits,
including blunting of the emotional response. Both the
neural basis of abnormal emotional behavior in PD and the
physiological effects of dopaminergic therapy on the response
of the amygdala, the central structure of emotion processing,
were investigated. The results demonstrate an abnormal
amygdala response in PD, which may underlie the emotional
deficit that accompanies the disease. In addition, in accordance
with the conclusions of experimental animal paradigms, the
results provide in vivo evidence of the role of dopamine in
modulating the response of the amygdala to sensory information
in humans [1]. The amygdala undergoes serious pathological
changes in PD. Although evidence suggests that the basolateral
amygdala (BLA) and the dorsal hippocampus work together
to influence spatial/contextual learning consolidation, the
circuitry mechanism by which, BLA selectively modulates
spatial/context memory consolidation is not clear. The medial
entorhinal cortex (mENT) is a critical area in the hippocampus-
based system for processing spatial information. As an efferent
target, BLA mENT is a candidate by which BLA influences the
consolidation of such learning [2]. The mechanism by which the
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BLA affects spatial/context memory consolidation is unknown.

Rotenone is a naturally occurring toxin that inhibits complex
I of the mitochondrial electron transport chain. Several
epidemiological studies have shown an increased risk of
Parkinson’s disease (PD) in individuals exposed chronically
to rotenone, and it has received great attention for its ability
to reproduce many critical features of PD in animal models.
Laboratory studies of rotenone have repeatedly shown that
it induces in vivo substantia nigra dopaminergic cell loss, a
hallmark of PD neuropathology. Additionally, rotenone induces
invivo aggregation of a-synuclein, the major component of Lewy
bodies and Lewy neurites found in the brain of PD patients and
another hallmark of PD neuropathology. Some in vivo rotenone
models also reproduce peripheral signs of PD, such as reduced
intestinal motility and peripheral o-synuclein aggregation,
both of which are thought to precede classical signs of PD in
humans, such as cogwheel rigidity, bradykinesia, and resting
tremor. Nevertheless, variability has been noted in cohorts of
animals exposed to the same rotenone exposure regimen and
also between cohorts exposed to similar doses of rotenone. Low
doses, administered chronically, may reproduce PD symptoms
and neuropathology more faithfully than excessively high doses,
but overlap between toxicity and parkinsonian motor phenotypes
makes it difficult to separate if behavior is examined in isolation.
Rotenone degrades when exposed to light or water, and choice
of vehicle may affect outcome. Rotenone is metabolized
extensively in vivo, and choice of route of exposure influences
greatly the dose used. However, male rodents may be capable of
greater metabolism of rotenone, which could therefore reduce
their total body exposure when compared with female rodents.
The pharmacokinetics of rotenone has been studied extensively,
over many decades. Here, we review these pharmacokinetics
and models of PD using this important piscicide [3].

The toxicity of rotenone has been demonstrated in a number
of in vitro [4] and in-vivo [5-7] studies. Furthermore, it has
been demonstrated that when low doses of multiple exogenous
factors are combined, synergistic neurotoxicity may occur.
Rotenone's effect has been attributed to the inhibition of
mitochondrial complex I [8], the release of NADPH oxidase-
derived superoxide from activated microglia [9] and possibly
alteration of glutamate transmission [10].

As a result, novel therapies involving natural antioxidants
and plant products/molecules with neuroprotective properties
are being used as adjunctive therapy. Hydrocortisone is an
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adrenocorticoid steroid with multiple mechanisms of action
including anti-inflammatory activity, immunosuppressive
properties and anti-proliferative actions.

Dysfunctional parkin due to mutations or post-translational
modifications contributes to dopaminergic neurodegeneration
in Parkinson’s disease (PD). Overexpression of parkin
provides protection against cellular stresses and prevents
dopamine cell loss in several PD animal models. Scientists
performed an unbiased high-throughput luciferase screening
to identify chemicals that can increase parkin expression.
Among promising parkin inducers, hydrocortisone possessed
the most favorable profiles including parkin induction ability,
cell protection ability, and physicochemical property of
absorption, distribution, metabolism, and excretion (ADME)
without inducing endoplasmic reticulum stress. They found that
hydrocortisone-induced parkin expression was accountable for
cell protection against oxidative stress. Hydrocortisone-activated
parkin expression was mediated by CREB pathway since gRNA
to CREB abolished hydrocortisone’s ability to induce parkin.
Finally, hydrocortisone treatment in mice increased brain parkin
levels and prevented 6-hydroxy dopamine induced dopamine
cell loss when assessed at 4 days after the toxin’s injection.
Our results showed that hydrocortisone could stimulate
parkin expression via CREB pathway, and the induced parkin
expression was accountable for its neuroprotective effect. Since
glucocorticoid is a physiological hormone, maintaining optimal
levels of glucocorticoid might be a potential therapeutic or
preventive strategy for Parkinson’s disease [11].

Most studies in PD animal models have focused on the
motor features associated with dopamine depletion but still the
molecular basis of PD and the molecular pathways of cell death
remain unknown [12]. While cellular models have helped to
identify specific events, in vivo animal models have simulated
most, although not all, of the hallmarks of PD and are useful for
testing new neuroprotective approaches.

The current study aims to determine the relationship of
excitatory and depressor responses of single neurons during
stimulation of BLA, Entorhinal cortex (ENT) of the brain,
structures that control emotional memory, in order to assess
the mechanisms of their defeat in a model of PD induced
by unilateral administration of rotenone and the success of
hydrocortisone protection in comparison with the norm.

Methods.

Experiments were performed on 9 rats of the Wistar Albino
line (230+£30 g). Rats were kept under typical conditions of
the laboratory vivarium. The animals were provided with
food and water ad libitum. The experimental protocol satisfied
the provisions of European Communities Council Directive
(2010/63/UE) and was approved by the Ethics Committee of
Yerevan State Medical University after Mkhitar Heratsi.

Rotenone was purchased from Sigma Chemical Company (St.
Louis, MO, USA).

Electrophysiological studies were performed in three
experimental series: intact (n = 3), on a rotenone model of
PD induced by unilateral administration of rotenone (2.5 mg/
kg/day) and aged up to the experiment of 4 weeks (n = 3),
under conditions of adrenalectomy (ADX) with protection by
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hydrocrtisone (14 injections every other day at a dose of Img
/1ml) (n=3). The introduction of rotenone was carried out under
conditions of nembutal anesthesia (40 mg / kg, w/b, 12 ngin 0.5
ul dimexide, at a rate of 1 ul/min) in the medial forebrain bundle
at the coordinates of the stereotaxic atlas (AP+0.2; L+1.8; DV+8
mm) [13]. The study was conducted in accordance with the
principles of the Basel Declaration and the recommendations
of the ARRIVE management [14]. In the stereotaxic apparatus,
trepanation of the skull from bregma to lambda was performed
and the dura mater was opened. Glass microelectrodes with a
tip diameter of 1-2 puM, filled with 2M NacCl, were injected into
the ENT according to stereotaxic coordinates (AP-5.4; L+6.5;
DV+8.3 mm) for extracellular recording of spike activity of
single neurons. High-frequency stimulation (HFS) of ipsilateral
BLA was carried out by means of rectangular current shocks
with a duration of 0.05 ms, an amplitude of 0.12-0.18 mV, a
current of 0.32 mA and a frequency of 100 Hz for 1 second,
according to stereotaxic coordinates (AP-2.76; L+1.5; DV+2.9
mm) (Figure 1). Operations were performed on narcotic
recorded in a stereotaxic apparatus. Activity was manifested in
the form of TD and TP followed by PTP and PTD of different
latency, severity and duration of animals (urethane 1.2g/kg iv).
A software mathematical analysis of a single spike activity of
261 neurons was carried out. Post-stimulus manifestations of
activity were evaluated by on-line registration and software
mathematical analysis, which allows the selection of spike-
megapixel discrimination with the derivation of "rasters" of
peristimulus spiking of neurons, the construction of histograms
of the sum and diagrams of the average frequency of spikes.
Further, multi-level statistical processing was carried out
separately for pre- and post-stimulus periods of time and the
period of HFS. For the selected compared groups of neuronal
activity spikes, as well as arbitrarily selected tests in a single
neuron, summarized and averaged peristymulus (PETH
Average) histograms and frequency histograms (Frequency
Average) were constructed with the calculation of the average
frequency of spikes. The analysis of the data obtained was
carried out according to a specially developed algorithm that
ensures the reliability of peristimulus changes in interspike
intervals.

The homogeneity of the two independent samples was
controlled by Student's t—criterion. In order to increase the
statistical reliability of peristimulus changes in interspike
intervals, the Wilcoxon-Mann-Whitney test was also used [15],
as a nonparametric criterion that assesses the homogeneity of
the independent two samples. Since the number of registered
spikes was quite large (up to several hundred spikes in a 10-20
second interval after the stimulus), a variation of this test was
used - the z-test, which determines its asymptotic normality.
Taking into account critical values in comparison with those of
the normal distribution at significance levels of 0.05, 0.01 and
0.001 (for various tests) shows that in most cases of spiking
neuronal activity in HFS, a statistically significant change
reached at least 0.05.

Results and Discussion.

Extracellular recording of spike activity of single ENT
neurons was carried out in norm (56 neurons n = 3), on the
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Figure 1. Scheme of the experiment on BLA stimulation and recoding from ENT. Stereotactic image of the stimulation zone - A, the point of
recording of neuronal activity - B, and the characteristic action potential - C.

PD model under ADX (102 neurons, n = 3), with protection
by hydrocortisone (103 neurons, n = 3), with exposure to 4
weeks. Through analysis based on the average number of spikes
(PETH), converted to interimpulse intervals and frequencies in
Hz (Frequency Average), the following changes in neuronal
activity were detected.

In ENT neurons on HFS BLA, tetanic depression in both
sequences in norm determined by about 2.50- and 1.50-fold
decreases in prestimulus activity, respectively (Figure 2A,
Groups A, B). Tetanic potentiation, accompanied by post-
tetanic potentiation and depression, was detected in the range of
1.33- and 1.75-fold excess of prestimulus activity (Figure 2B,
Groups A, B). In ENT neurons in HFS BLA, tetanic depression
in the PD model under ADX conditions was determined within
1.43- and 1.57-fold decrease in prestimulus activity in both
sequences, and tetanic potentiation was calculated on the order
of 1.11 and 1.10-fold excess of prestimulus activity in the
excitatory and excitatory-depressor sequence (Figures 3A, B,
Group A, B). Tetanic potentiation, accompanied by post-tetanic
potentiation and depression, was detected in the range of 1.33-
and 1.75-fold excess of prestimulus activity (Figure 2B, Groups
A, B). In ENT neurons in HFS BLA, tetanic depression in the
PD model under ADX conditions was determined within 1.43-
and 1.57-fold decrease in prestimulus activity in both sequences,
and tetanic potentiation was calculated on the order of 1.11
and 1.10-fold excess of prestimulus activity in the excitatory
and excitatory-depressor sequence (Figures 3 A, B, Group A,
B). This, apparently, can’t but lead to the actual suppression
of both synaptic processes. Further, in ENT neurons in HFS
BLA, under the conditions of hydrocortisone exposure, in both
depressor sequences, tetanic depression reached a 1.66- and
2.50-fold decrease in prestimulus activity, respectively (Figure
4A, Groups A, B), and tetanic potentiation in both sequences
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was calculated on the order of 1.20 and 1.50 times the excess of
prestimulus activity (Figure 4B, Group A, B). In other words, the
protective effect of hydrocortisone is obvious, which exceeded
the values of tetanic depression in both sequences. reaching
1.66- and 2.50-fold (against 1.43- 1.57-fold in pathology).

The same applies to tetanic potentiation, which reached 1.20-
and 1.50-fold excess against 1.11-and 1.10 times - in pathology.
However, it is necessary to postpone the conclusion until their
subsequent evaluation, taking into account the pre- and post-
stimulus frequency of impulse activity in these experimental
conditions of distortion of post-stimulus synaptic effects, due to
the excess of its frequency.

When assessing the relative severity of the above-mentioned
depressor and excitatory effects, on the example of diagrams of
the average frequency of spikes derived on the basis of raster
of pre- and post-stimulus depressor and depressor-excitatory
multidirectional manifestations of spike activity of ENT
neurons in the norm, on a model of PD induced by rotenone,
burdened with ADX, and under conditions of protection with
hydrocortisone indicating the average digital values in real time
20 seconds before and after stimulation, including HFS time,
obtained values presented in the form of disk diagrams to more
clearly represent the degree of severity in the frequency display
(in % and digital display) of experimental data in Figure 8
(based on Figures 5-7), which led to the following conclusion.

The values of tetanic depression in the depressor and depressor-
excitatory sequence and the levels of tetanic potentiation in the
excitatory and excitatory-depressor sequence of ENT neurons
on HFS BLA in norm reached 1.78- and 1.34-fold reduction
(Figures 5 and 8A, B), 1.46- and 1.35-fold excess (Figures 5
and 8C, D), compared with the prestimulus level of activity,
respectively. As can be seen, these values differed little, which
indicates the actual balance of depressor and excitatory post-
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Figure 5. A-D — histograms of sum spikes of pre- and post-stimulus tetanic depressor manifestations of activity TD PTD (A), in combination with
post-tetanic excitatory — TD PTP (B), excitatory — TP PTP (C), accompanied by depressor TP PTD (D), of ENT neurons, evoked at HFS of BLA in
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Figure 7. A-D — histograms of sum spikes of pre- and poststimulus tetanic depressor manifestations of activity TD PTD (A4), in combination with
posttetanic excitatory — TD PTP (B), excitatory — TP PTP (C), accompanied by depressor (D), of ENT neurons, evoked at HF'S of BLA on the model
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stimulus manifestations of the activity of the studied neurons
in the norm. The values of tetanic depression in the depressor
and excitatory succession of ENT neurons on HFS BLA, in
comparison with the prestimulus level of activity on the PD
model under ADX conditions, differed significantly with this
type of analysis, in comparison with the norm (1.32- and 1.21
versus 1.78- and 1.34-fold, respectively) (Figures 5,6 and 8
A-D), which will be discussed later with a different type of
evaluation of the results.

In the ENT neurons on HFS BLA, the values of tetanic
depression and the levels of tetanic potentiation in both post-
stimulus sequences on the PD model with ADX under the
conditions of hydrocortisone protection were calculated in
the range of 1.36- and 1.33-fold reduction and 1.38 and 1.37-
fold excess of prestymulus activity (Figures 5-7 and 8A-D).
In other words, taking into account only the multiplicity of
measurements of comparative indicators of these post-stimulus
effects in pathology, in comparison with those in the conditions
of protection, there were unexpressed shifts.

An interesting, in addition, more pronounced picture was
found when comparing the frequency of pre- and post-stimulus
activity of ENT neurons on HFS BLA under these experimental
conditions. The predominant frequency of activity preceding the
depressor effects in the norm and on the PD model with ADX
reached multiples of 9.34, 7.40 and 22.58, 21.82, respectively
(Figures 5,6 and 8E, F) and preceded by excitatory sequences in
norm and pathology - 6.26, 10.36 and 21.44, 22.61, respectively
(Figures 5, 6 and 8 E, F).

It is obvious that there is a significant excitotoxicity in the
PD model, in comparison with the norm indicating pronounced
neurodegeneration preceding both depressor and excitatory post-
stimulus effects (3.42- and 2.20-fold prevailing, respectively),
which was to be expected.

The prestimulus frequency of activity in ENT neurons
preceding depressor and excitatory sequences, under conditions
of hydrocortisone protection, was calculated in the range of
12.02, 10.74, 11.21 and 11.70, respectively, compared with
9.34. 7.40, 6.26. 10.36 in norm and 22.58, 21.82, 21.44, 22.61
in pathology without protection (Figures 5-7 and 8 E-H).

In other words, in pathology with protection, the prestimulus
frequency of activity preceded by depressor post-stimulant
effects decreased by 1.87-, 2.03-fold, and the one preceded by
excitatory effects - 2.01-, 2.03-fold, with a real approximation to
the norm. Thus, under the conditions of protection, in comparison
with pathology, there was an obvious and significant decline in
the prestimulus frequency preceded by depressor and excitatory
post-stimulus effects, and therefore excessively overestimated
toxic excitability, which clearly indicates in favor of protection
by hydrocortisone, which is more than successfully coped with
excitotoxicity.

As for the post-stimulus frequency of activity of ENT neurons,
then normally, being accompanied by depressor and excitatory
post-stimulant effects, it reached 5.25, 5.50, 9.14 and 14.001,
and on the PD model with ADX - 17.08, 18.0, 27.01 and 27.01
(Figures 5, 6 and 8 I-L). In other words, on the PD model with
ADX, the post-stimulus frequency, accompanied by depressor
reactions, significantly exceeded the norm of 3.25- and 3.28-
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fold, and accompanied by excitatory - 2.88- and 2.03-fold, in
pathology without protection. Thus, in general, there was a
powerful increase in the frequency of post-stimulus activity,
indicating again, as in the case of the prestimulus frequency,
a huge excitotoxicity (Figures 5,6 and 8 I-L). Further, under
protection conditions, there was a sharp decrease in the frequency
of post-stimulus activity on the PD model, accompanied by
depressor and excitatory activity (within 2.04-, 2.05 and 1.71-
, 1.67-fold, respectively) with an actual approximation to the
norm of such, accompanied by depressor (8.80 and 8.08 vs.
5.25 and 5.50) and excitatory (15.42 and 16.17 vs. 9.14 and
14.00) (Figures 5-7 and 8 I-L). In conclusion, the PD model in
condition of ADX revealed a powerful excitotoxicity, which the
used protection with hydrocortisone successfully copes.

Excitotoxicity in neurodegenerative diseases, which occurs
as a compensatory response to a decrease in excitation as a
result of neuronal death, damages them by overactivation of
glutamate NMDA and AMPA receptors [16], thereby causing
neuronal apoptosis and subsequent death [17,18]. Excitotoxicity
is accompanied by impaired calcium buffering, free radical
generation, activation of mitochondrial permeability, and
secondary excitotoxicity [19]. The noted, according to the
concept put forward in a recently published report, indicates
the need for deepening, in conditions of neurodegeneration,
depressor effects that carry a protective load and reduce
excessive excitatory reactions [20,21].

Conclusion.

In three series of experiments on 9 Albino rats (230+£30g), an
analysis of the impulse activity of 261 single neurons of the
Entorhinal cortex (Entorhinal cortex - ENT) of the brain with
high-frequency stimulation (HFS): baso-lateral amygdala
(Basolateral amygdala - BLA) in norm (n = 3), on a rotenone
model of Parkinson's disease (PD), induced by unilateral
administration of rotenone and aged up to the experiment 4
weeks (n = 3) and under ADX conditions with protection with
hydrocortisone (n = 3). Based on the softvare mathematical
analysis of the degree of severity of the average frequency of
post-stimulus depressor and excitatory synaptic effects of ENT
neurons, in comparison with the prestimulus level of activity,
it was revealed. In the norm, a 1.78- and 1.34-fold decrease in
depressor post-stimulus tetanic and post-tetanic synaptic effects
and a 1.46- and 1.35-fold excess of such excitatory effects. L.e.
actual balance.

On the PD model with ADX, in comparison with the norm, the
indicated levels of postsynaptic activity in this type of analysis
reached 1.32-,; 1.21-fold reduction and 1.23-. 1.20- a multiple
excess of prestimulus activity, which at this level of analysis
does not allow to objectively judge an important indicator of
neurodegeneration - excitotoxicity, which will be discussed
later. Under the conditions of hydrocortisone exposure, the
values of tetanic depression and the levels of tetanic potentiation
in both poststimulus sequences were calculated within 1.36-,
1.33-fold reduction and 1.37-, 1.38-fold excess of prestimulus
activity, with a certain tendency to approach the norm. In
other words, taking into account only the multiplicity of
measurements of comparative indicators of these post-stimulus
effects in pathology, in comparison with those in the conditions



of protection, there were insignificant shifts. Analysis of the pre-
and post-stimulus frequency of activity of ENT neurons on HFS
BLA, preceded and accompanied by depressor and excitatory
post-stimulus effects in pathology and with protection,
revealed more pronounced changes. The predominant
frequency of activity preceding depressory and excitatory post-
stimulus effects in the PD model with ADX was 22.58-, 21.82-
fold reductions and 21.44 and 22.61 times higher, which, in
comparison with the norm, indicates a significant excitotoxicity
on the PD model with ADX. The prestimulus frequency of
activity in ENT neurons preceding the depressor and excitatory
sequences under conditions of hydrocortisone protection
decreased to 12.02, 10.74- and 11.21, 11.70, respectively, with a
real approximation to the norm, which clearly indicates in favor
of protection, more than successfully coping with excitotoxicity.
The post-stimulus frequency of ENT neurons in the PD model
with ADX, accompanied by depressor and excitatory effects,
also significantly exceeded the norm: 17.08, 18.03 and 26.33,
27.01, respectively, i.e. 17.08-, 3.28- and 2.88-, 2.02-fold,
respectively, which also indicates enormous excitotoxicity.
Under the conditions of hydrocortisone protection on the PD
model with ADX, there was a sharp decrease in the post-
stimulus frequency of activity of ENT neurons on HFS BLA,
accompanied by depressor and excitatory activity (within 2.04-,
2.05- and 1.71-, 1.67-fold) with an actual approximation to the
norm of such, accompanied by depressor (8.80, 8.08 vs. 5.25
5.50) and excitatory (15.42, 16.17 vs. 9.14, 14.00).

Our study provides evidence for the therapy of Parkinson's
disease as well as the underlying mechanism of Hydrocortison's
neuroprotective activity. Given the intricacy of molecular and
neurological systems, more research is needed to pinpoint the
precise process.
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CooTHOmICHHE B030Y:KIAaI0IIUX " TOPMO3HBIX
CHHANITHYECKUX INPOLECCOB B HEHPOHAX IHTOPUHAIBLHOI
KOPBI T'OJI0BHOT0 M0O3ra, aKTHBHPYeMBbIX (6a30/1aTepaabHOil
AMHUTAAI0H HA MoJeau 00JIe3HH MAPKHHCOHA, B YCIOBHAX
3aIHUTHI THAPOKOPTH30HOM

Ogcensin B.C, Apaxxan I''M*, AonyaBaad Aiab-Yauanmn,
MymersH I'.X, Capkucsin [x, 'a6puensin U. I'. AnHOTan NS



bonesur  Ilapkuncona (BII) —  pacmpocTpaneHHOe
HelipogereHepatupHoe  3aboneBanue. OHa — IOpaxkaeT
LEHTPaIbHYI0 HEPBHYIO CUCTEMY M HapyllaeT KOTHUTHBHBIE
IPOLECCH], JBUTaTeNbHbIE HABBIKU U Ipyrue GpyHkiuu. Llensro
JAHHOTO MCCIEJOBaHUA OBbLIO ONpPEAeNICHUE CHHANTHYECKHX
MIPOLIECCOB B MeEAMANILHON SHTOpHHanbHOH Kope (MENT)
OpUd  BBICOKOYACTOTHOM  CTUMyJAIMU  0a3oiaTepanbHOH
MUHJQJIMHEL Ha Mojien Oosie3Hu [lapkuHCOHA MOJ BIMSHUEM
TUAPOKOPTH30HA. POTEHOH ywacTByeT B  JereHepaluu
Jo(paMHHEPTUUECKUX  HEHpoHOB. MBI  HCCIeNoBaiH,
3alllUIaeT JIM THAPOKOPTU30H OT BbHI3BAHHOW POTEHOHOM
Jo(haMUHEPruIeckoil HeHPOTOKCUYHOCTH B MOJIEIH KPBICHI C
HOMOIIBIO N VIVO 2IEKTPUYECKON PETUCTPALIMU U3 MeIUaNbHOH
SHTOPUHANBHOH KOPBL. ['MAPOKOPTU30H 3HAUUTENILHO YTyl
JNEKTPUUECKYI0 AaKTUBHOCTh HeilpoHoB B MENT y kpeic ¢
mozenbto BII, BEI3BaHHOI pOTEHOHOM.

Kunrouesbie cioBa: Gone3ns IlapkuHCOHA, CUHANTUYECKUE
IIPOLECCH], PHTOPUHAIIbHAS KOpa, 0a3onaTepabHas MUHIAINHA,
TUAPOKOPTH30H.
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