GMN: Georgian Medical News is peer-reviewed, published monthly journal committed to promoting the science and art of medicine and the betterment of public health, published by the GMN Editorial Board since 1994. GMN carries original scientific articles on medicine, biology and pharmacy, which are of experimental, theoretical and practical character; publishes original research, reviews, commentaries, editorials, essays, medical news, and correspondence in English and Russian.

GMN is indexed in MEDLINE, SCOPUS, PubMed and VINITI Russian Academy of Sciences. The full text content is available through EBSCO databases.

GEORGIAN MEDICAL NEWS

WEBSITE
www.geomednews.com
К СВЕДЕНИЮ АВТОРОВ!

При направлении статьи в редакцию необходимо соблюдать следующие правила:

1. Статья должна быть представлена в двух экземплярах, на русском или английском языках, напечатанная через полтора интервала на одной стороне стандартного листа с шириной левого поля в три сантиметра в три сантиметра. Используемый компьютерный шрифт для текста на русском и английском языках - Times New Roman (Кириллица), для текста на грузинском языке следует использовать AcadNusx. Размер шрифта - 12. К рукописи, напечатанной на компьютере, должен быть приложен CD со статьей.

2. Размер статьи должен быть не менее десяти и не более двадцати страниц машинописи, включая указатель литературы и резюме на английском, русском и грузинском языках.

3. В статье должны быть освещены актуальность данного материала, методы и результаты исследования и их обсуждение.

При представлении в печать научных экспериментальных работ авторы должны указывать вид и количество экспериментальных животных, применяющиеся методы обезболивания и усыпления (в ходе острых опытов).

4. К статье должны быть приложены краткое (на полстраницы) резюме на английском, русском и грузинском языках (включающее следующие разделы: цель исследования, материал и методы, результаты и заключение) и список ключевых слов (key words).

5. Таблицы необходимо представлять в печатной форме. Фотокопии не принимаются. Все цифровые, итоговые и процентные данные в таблицах должны соответствовать таковым в тексте статьи. Таблицы и графики должны быть озаглавлены.

6. Фотографии должны быть контрастными, фотокопии с рентгенограмм - в позитивном изображении. Рисунки, чертежи и диаграммы следует озаглавить, пронумеровать и вставить в соответствующее место текста в tiff формате.

В подписях к микрофотографиям следует указывать степень увеличения через окуляр или объектив и метод окраски или импрегнации срезов.

7. Фамилии отечественных авторов приводятся в оригинальной транскрипции.

В конце каждой оригинальной статьи приводится библиографический список. В список литературы включаются все материалы, на которые имеются ссылки в тексте. Список составляется в алфавитном порядке и нумеруется. Литературный источник приводится на языке оригинала. В списке литературы сначала приводятся работы, написанные знаками грузинского алфавита, затем кириллицей и латиницей. Ссылки на цитируемые работы в тексте статьи даются в квадратных скобках в виде номера, соответствующего номеру данной работы в списке литературы. Большинство цитированных источников должны быть за последние 5-7 лет.

9. Для получения права на публикацию статья должна иметь от руководителя работы или учреждения визу и сопроводительное отношение, написанные или напечатанные на бланке и заверенные подписью и печатью.

10. В конце статьи должны быть подписи всех авторов, полностью приведены их фамилии, имена и отчества, указаны служебный и домашний номера телефонов и адреса или иные координаты. Количество авторов (соавторов) не должно превышать пяти человек.

11. Редакции оставляет за собой право сокращать и исправлять статьи. Корректура авторам не высылается, вся работа и сверка проводится по авторскому оригиналу.

12. Недопустимо направление в редакцию работ, представленных к печати в иных издательствах или опубликованных в других изданиях.

При нарушении указанных правил статьи не рассматриваются.
REQUIREMENTS

Please note, materials submitted to the Editorial Office Staff are supposed to meet the following requirements:

1. Articles must be provided with a double copy, in English or Russian languages and typed or computer-printed on a single side of standard typing paper, with the left margin of 3 centimeters width, and 1.5 spacing between the lines, typeface - Times New Roman (Cyrillic), print size - 12 (referring to Georgian and Russian materials). With computer-printed texts please enclose a CD carrying the same file titled with Latin symbols.

2. Size of the article, including index and resume in English, Russian and Georgian languages must be at least 10 pages and not exceed the limit of 20 pages of typed or computer-printed text.

3. Submitted material must include a coverage of a topical subject, research methods, results, and review.

Authors of the scientific-research works must indicate the number of experimental biological species drawn in, list the employed methods of anesthetization and soporific means used during acute tests.

4. Articles must have a short (half page) abstract in English, Russian and Georgian (including the following sections: aim of study, material and methods, results and conclusions) and a list of key words.

5. Tables must be presented in an original typed or computer-printed form, instead of a photocopied version. Numbers, totals, percentile data on the tables must coincide with those in the texts of the articles. Tables and graphs must be numbered.

6. Photographs are required to be contrasted and must be submitted with doubles. Please number each photograph with a pencil on its back, indicate author’s name, title of the article (short version), and mark out its top and bottom parts. Drawings must be accurate, drafts and diagrams drawn in Indian ink (or black ink). Photocopies of the X-ray photographs must be presented in a positive image in tiff format.

Accurately numbered subtitles for each illustration must be listed on a separate sheet of paper. In the subtitles for the microphotographs please indicate the ocular and objective lens magnification power, method of coloring or impregnation of the microscopic sections (preparations).

7. Please indicate last names, first and middle initials of the native authors, present names and initials of the foreign authors in the transcription of the original language, enclose in parenthesis corresponding number under which the author is listed in the reference materials.

In GMN style for each work cited in the text, a bibliographic reference is given, and this is located at the end of the article under the title “References”. All references cited in the text must be listed. The list of references should be arranged alphabetically and then numbered. References are numbered in the text [numbers in square brackets] and in the reference list and numbers are repeated throughout the text as needed. The bibliographic description is given in the language of publication (citations in Georgian script are followed by Cyrillic and Latin).

9. To obtain the rights of publication articles must be accompanied by a visa from the project instructor or the establishment, where the work has been performed, and a reference letter, both written or typed on a special signed form, certified by a stamp or a seal.

10. Articles must be signed by all of the authors at the end, and they must be provided with a list of full names, office and home phone numbers and addresses or other non-office locations where the authors could be reached. The number of the authors (co-authors) must not exceed the limit of 5 people.

11. Editorial Staff reserves the rights to cut down in size and correct the articles. Proof-sheets are not sent out to the authors. The entire editorial and collation work is performed according to the author’s original text.

12. Sending in the works that have already been assigned to the press by other Editorial Staffs or have been printed by other publishers is not permissible.

Articles that Fail to Meet the Aforementioned Requirements are not Assigned to be Reviewed.
საქართველოს აკადემიაში

1. სტატიის პორტფოლიოზე რუსული და ინგლისური ენებითდგომით ხელმისაწვდომი უფლებები 1 ადგილზე. 3 მა ჰაითელის მარშვიდა დედოფას და სტატიის ჩაწერა 1.5 ანგაზაურის დამოკულტურა, კონფერენციამდე გამოვიყენებთ შენი ტექსტი - Times New Roman (ქირილი). ხოლო ინგლისურად მატერიალი ხელოვნებით გამოვიყენებთ AcadNusx. ბიბილის თაობა – 12. სტატიას იქნება ძალიან ტექსტურ ჟულები.

2. სტატიის მოყვანილება არ უნდა შეიძლო 2 ტანიდან 20 ტანიდან მეტის გამომდებარე ჭეშმარიტ და კლასურ ენაში ნაბიჯით.

3. სტატიის ხელოვნებით არ უნდა გამოიყენდა სწორედ დახვრეხილი უფრო ბრუნვა. გამოვიყენოთ სამი მოთანხმებელი - მათი ძალა და იტანგებით შერჩებით (დამრგავები, თავისუფალზე და წონანი ენაში).

4. სტატიის სიმდიდრის ზემოთ მოყვანილი ნაწარმოები უნდა შეიმუშავოთ მანქანურად (სახიშვილი, აღმასრულებელი, დახვრეხილი შიფრულები)

5. სტატიის თაობა სწორედ წიფლნიშვნებით ბოლოში გამომდინარე ქვესიტურა.

6. სტატიის უფრო გამოდინარული ენაში უნდა შეიმუშავოთ შუალება, წარწერა, გასახელისვლის ნაწარმოები და გამოყოფა.

7. სტატიის უფრო გამოდინარული ენაში უნდა შეიმუშავოთ საქართველოს ელმაგობრივი ზომები.

8. სტატიის თაობა უნდა შეიძლოდეს, რომ ეტაპთა ჭორებს შეიძლო ურთიერთობა, ხოლო თაობა უნდა შეიძლო, რომ სიძლიერით შეიძლო ურთიერთობა.

9. სტატიის თაობა უნდა შეიძლო, რომ მათ ჭორებს შეიძლო ურთიერთობა, ხოლო თაობა უნდა შეიძლო, რომ უნდა შეიძლო ურთიერთობა.

10. სტატიის თაობა უნდა შეიძლო, რომ მათ ჭორებს შეიძლო ურთიერთობა, ხოლო თაობა უნდა შეიძლო, რომ უნდა შეიძლო ურთიერთობა.

11. ეტაპთა ჭორებს შეიძლო ურთიერთობა, ხოლო თაობა უნდა შეიძლო, რომ უნდა შეიძლო ურთიერთობა.

12. დამოუკიდებელი სტატიებით იქნება სტატიის მარშვიდენი, რომლებიც შეიძლო ურთიერთობა, რომ უნდა შეიძლო ურთიერთობა.

აღოწერა ქვესიტურის დათვალების შემთხვევებში სტატიის ან გამოყოფა.

გამომთხვევა ქვესიტურის დათვალების შემთხვევებში სტატიის ან გამოყოფა.
Hasanov N.H, Istomin A.G, Istomin D.A.
MATHEMATICAL JUSTIFICATION OF THE CHOICE OF RODS FOR EXTERNAL FIXATION DEVICES FOR POLYSTRUCTURAL PELVIC INJURIES……………………………………………………………………………………………………..6-13

B. Todorova, I. Bitoska, A. Muca, O.Georgieva Janev, T. Milenkovic.
A RARE CASE OF A PATIENT WITH HYPERTHYROIDISM AFTER HYPOTHYROIDISM……
PECULIARITIES OF USING A NEUROVASCULARIZED FLAP ON THE SURAL ARTERY IN PLASTIC SURGERY OF GUNSHOT DEFECTS ON THE FOOT AND LOWER LEG ..232-236

MICROBIOLOGICAL FEATURES OF A LAPAROTOMY WOUND COMPLICATED BY POSTOPERATIVE EVENTRATION AGAINST THE BACKGROUND OF AN ONCOLOGICAL PROCESS ..237-242

CIRCULATING PEPTIDES OF THE TNF SUPERFAMILY AND TNF RECEPTOR SUPERFAMILY IN SUBJECTS WITH TYPE 1 DIABETES: RELATIONSHIPS WITH CLINICAL AND METABOLIC PARAMETERS ..243-248

CORRELATIVE ASSOCIATION OF OXYGENATION AND SEPSIS PANELS WITH THE USE OF ACE2 INHIBITORS AND WITHOUT IT IN THE CONDITIONS OF SEPTIC SHOCK IN COVID-19-INFECTED AND NON-INFECTED PATIENTS (COHORT STUDY) ..249-253

ASSOCIATION BETWEEN GLN27GLU POLYMORPHISM IN THE B2 ADRENERGIC RECEPTOR GENE AND OBESITY RISK IN PATIENTS WITH EARLY-ONSET AND LATE-ONSET BRONCHIAL ASTHMA ..254-258

INFLUENCE OF VASCULAR STENT SURFACE TREATMENT WITH AN ADAPTIVE COMPOSITION (ADC) FOR IMPROVING ITS BIOCOMPATIBILITY AND RESTENOSIS PREVENTION ..259-263

THE PREVALENCE OF C3953T IL1B GENE AND G308A TNFA GENE POLYMORPHIC VARIANTS IN THE PATIENTS WITH DIFFERENT TYPES OF ENCEPHALOPATHIES ...264-269

EVALUATION OF THE CLINICAL CONDITION OF THE ORAL CAVITY BEFORE ADHESIVE SPLINTING OF MOVABLE TEE TH ..270-274

METABOLOMIC MARKERS OF ENDOMETRIOSIS: PROSPECTS ..275-279

LAPAROSCOPIC APPROACH TO A GIANT RUPTURED SPLENIC CYST: A CHALLENGING CASE REPORT ..280-283

CLINICAL AND OBJECTIVE TEST CHARACTERISTICS OF VESTIBULAR MIGRAINE: IMPLICATIONS FOR DIAGNOSIS AND MANAGEMENT ...284-289

POSTCHOLECYSTECTOMY SYNDROME: UNDERSTANDING THE CAUSES AND DEVELOPING TREATMENT STRATEGIES FOR PERSISTENT BILIARY SYMPTOMS AFTER GALLBLADDER REMOVAL ..290-296

LOSS OF EFFICACY OF ADALIMUMAB IN HIDRADENITIS SUPPURATIVA: FOCUS ON ALTERNATIVES ..297-300
DIAGNOSTIC VALUE OF LABORATORY MARKERS OF SYNTROPIC LESIONS OF THE CIRCULATORY SYSTEM ORGANS IN PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS

Liubov Kobak1, Orest Abrahamovych1, Uliana Abrahamovych1, Andriy Maksymuk2, Ruslana Ivanochko1.

1 Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.
2 Ivan Franko National University of Lviv, Lviv, Ukraine.

Abstract.

Introduction: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects almost all internal organs, among which circulatory system organs (CSO) lesions are not only among the most common but also at the top of the list of causes of mortality. The tactics of treatment of patients with SLE without and in combination with CSO lesions are fundamentally different, and therefore, improving diagnostic methods will help to enhance the effectiveness of the management of this category of patients.

The aim of the study: To determine the diagnostic value of laboratory markers of syntropic lesions of the circulatory system organs in patients with systemic lupus erythematosus.

Materials and methods: The research included 125 patients with SLE with CSO lesions, among whom the vast majority were young women. Patients were stratified according to severity. Syntropic lesions were those whose frequency significantly increased with increasing severity of SLE: retinal angiopathy, capillaritis, Raynaud's syndrome, livedo reticularis, atherosclerosis, mitral valve insufficiency, mitral valve thickening, pericardial effusion, pulmonary hypertension, myocarditis, endocarditis, symptomatic arterial hypertension, and vein thrombosis. During the study, the diagnostic value of individual laboratory markers and their constellations in terms of sensitivity, specificity, and accuracy in patients with SLE with syntropic lesions of CSO was determined step by step, and the one with the highest diagnostic value for the diagnosis of these lesions was chosen. The difference was considered statistically significant if p < 0.05. The association coefficient and the contingent coefficient were used to determine the closeness of the relationship between the marker and the syntropic lesion. The relationship was considered confirmed if the association coefficient was ≥ 0.50 or the contingent coefficient was ≥ 0.30.

Results: We studied the diagnostic value of individual laboratory markers and their constellations in terms of sensitivity, specificity, and accuracy in patients with SLE with syntropic CSO lesions. It was found that the best diagnostic value for the diagnosis of retinal angiopathy is the constellation of ↑ LDL + ↑ IA + ↑ anti-ds DNA + ↑ ANA; capillaritis – ↑ β-globulins + ↑ IA + ↑ anti-ds DNA + ↑ antiphospholipid antibodies Ig M + ↑ anti-Sm + ↓ C4; Raynaud's syndrome – a separate marker ↓ C3; livedo reticularis – ↑ ESR + ↑ small CIC + ↑ anti-ds DNA + ↑ anti-Sm; atherosclerosis – ↓ hemoglobin + ↑ LDL + ↑ ANA + ↓ C4; mitral valve insufficiency – ↑ ESR + ↑ anti-ds DNA + ↑ ANA + ↑ antiphospholipid antibodies Ig M; mitral valve stenosis – ↑ ESR + ↑ LDL + ↑ small CK + ↑ ANA; pericardial effusion – erythropenia + ↑ C-RP + ↑ lupus anticoagulant; pulmonary hypertension – hypercholesterolemia + ↑ LDL + ↑ anti-ds DNA + ↑ ANA; myocarditis – an individual marker ↓ C4; endocarditis – ↑ ESR + ↑ total fibrinogen + ↑ γ-globulins + hypercholesterolemia + ↑ anti-Sm; symptomatic arterial hypertension – ↑ LDL + ↑ anti-ds DNA + ↑ ANA + ↑ anti-SSA (Ro); vein thrombosis – erythropenia + ↓ hemoglobin + ↑ LDL + ↑ ANA.

Conclusions: For each syntropic lesion in patients with systemic lupus erythematosus, an individual laboratory marker or constellation has been identified that has the best diagnostic value for the diagnosis of these lesions.

Key words. Systemic lupus erythematosus, circulatory system organs lesions, syntropic lesions, comorbidities, laboratory markers, constellations, diagnostic value.

Introduction.

Systemic lupus erythematosus (SLE) is one of the most severe diseases in rheumatology. It is a chronic autoimmune disease with multisystemic lesions of unclear etiology that occurs as a consequence of numerous endogenous and exogenous factors in case of genetic predisposition [1]. SLE is characterized by the hyperproduction of a large number of autoantibodies and immune complexes that cause immunoinflammatory damage to almost all internal organs [2], among which circulatory system organs (CSO) lesions are not only among the most common but also, they are at the top the list of causes of mortality in patients with SLE [3].

The tactics of management of patients with SLE without and in combination with CSO lesions are fundamentally different, and protocol methods for instrumental diagnosis of CSO lesions are rarely available and often costly. Patients with SLE with syntropic lesions of CSO (syntropic lesions are those whose frequency increases significantly with increasing activity of SLE because they have etiologic and/or pathogenetic mechanisms, common with the underlying condition), who have a diagnosis of the underlying condition, verified with protocol laboratory tests of blood and urine [4,5], determining the diagnostic value of these laboratory markers for syntropic lesions of CSO will help to improve the effectiveness of the management of this category of patients.

The aim of the study. To determine the diagnostic value of laboratory markers of syntropic lesions of the circulatory system organs in patients with systemic lupus erythematosus.

Materials and Methods.

After signing a voluntary consent to participate, as required by the Helsinki Declaration of Human Rights, the Council of Europe Convention on Human Rights and Biomedicine, in a randomized manner with preliminary stratification based on the presence of SLE and CSO lesions [6-8], the study involved 125 patients, including 110 women (88.00%) and 15 men (12.00%) aged 18 to 74 years (mean age 42.48±1.12 years), including...
syntropic lesions: retinal angiopathy (32 patients), capillaritis (4 patients), Raynaud's disease (67 patients), livedo reticularis (35 patients), atherosclerosis (13 patients), mitral valve insufficiency (MVI) (55 patients), MV thickening (47 patients), pericardial effusion (22 patients), pulmonary hypertension (16 patients), myocarditis (29 patients), endocarditis (2 patients), symptomatic arterial hypertension (AH) (43 patients), vein thrombosis (7 patients).

To determine the diagnostic value of laboratory markers of syntropic lesions of CSO in patients with SLE, we analyzed the indicators of complete blood count (erythrocytes, hemoglobin, platelets, leukocytes, leukocyte formula, erythrocyte sedimentation rate (ESR)) and biochemical blood test (creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), C-reactive protein (CRP), antistreptolysin O (ASLO), rheumatoid factor (RF)), coagulogram (prothrombin time, prothrombin index, total fibrinogen, international normalized ratio (INR)), proteinogram (total protein, albumin, α1-globulins, α2-globulins, β-globulins, γ-globulins), lipidograms (total cholesterol, triglycerides, low-density lipoprotein (LDL), high-density lipoprotein (HDL)), atherogenicity index (AI)), the content of circulating immune complexes (CIC) (large, medium, small), specific immunological studies (lupus erythematosus (LE) cells, antibodies to double-stranded deoxyribonucleic acid (anti-dsDNA), antinuclear antibodies (ANA), antiphospholipid antibodies Immunoglobulin M (IgM), antiphospholipid antibodies Immunoglobulin G (IgG), anti-Sjögren's-syndrome-related antigen A autoantibodies (anti-SSA (Ro)) and anti-Smith (anti-Sm) antibodies, complement components C3 and C4), as well as complete urine analysis (protein, components of organized urine sediment).

For the study, laboratory markers were selected that were statistically significantly different in the number of cases in patients with SLE without the studied syntropic lesion of CSO (p < 0.050) and had a positive association with syntropic lesions (association coefficient (CA) greater than 0.00).

The study was conducted in two stages. At the first stage, the diagnostic value of individual laboratory markers was determined by sensitivity, specificity, and accuracy in patients with SLE with 12 syntropic lesions of CSO (in patients with endocarditis, separately evaluated laboratory markers did not have statistically significant differences from those in patients with SLE without it) and the one with the best diagnostic value based on the highest value of the sum of sensitivity and specificity was selected (diagnostic accuracy is significantly higher than 50.00% as per one-sided proportion test, p < 0.050), at the second stage – the diagnostic value of the constellations of these laboratory markers in patients with SLE with 13 syntropic lesions of CSO (all evaluated constellations of laboratory markers in all patients with 13 syntropic lesions of CSO had a statistically significant relationship with the lesion and their diagnostic accuracy was significantly higher than 50.00 % (based on a one-sided proportion test)), and, additionally, the closeness of the relationship between marker constellations and syntropic lesions of CSO and between individual markers and syntropic lesions of CSO in patients with SLE were compared.

The actual material was statistically processed on a personal computer in Excel, 2010 and Statistica 6.0 using descriptive statistics. The diagnostic (sensitivity, specificity, and accuracy) values were calculated based on contingency tables. To determine the constellations of laboratory markers, Newton's binomial coefficient was used applying Solver add-in to MS Excel. The best constellation was the one with the highest sum of sensitivity and specificity among all possible constellations. The difference was considered statistically significant if p < 0.050. To determine the closeness of the relationship between the marker and the lesion, the CA, and the contingent coefficient (CC) were used. The relationship was considered confirmed if CA ≥ 0.50 or CC ≥ 0.30.

Results and Discussion.

The first stage of the research allowed us to determine that in patients with SLE with retinal angiopathy, the sensitivity of the thrombocytopenia marker (direct correlation, p = 0.037) is 40.00%, specificity – 77.63%, accuracy – 66.98%; sensitivity of hypercholesterolemia (direct correlation, p = 0.017) reaches 80.65%, specificity – 40.91%, accuracy – 51.26%; sensitivity of hypertriglyceridemia (direct correlation, p = 0.013) is 33.33%, specificity – 87.18%, accuracy – 72.22%; sensitivity of ↑ LDL (direct correlation, p = 0.004) is 93.10%, specificity – 32.47%, accuracy – 49.06%; sensitivity of ↑ IA (direct correlation, p = 0.008) is 75.86%, specificity – 50.65%, accuracy – 57.55%; sensitivity of ↑ anti-dsDNA (direct correlation, p = 0.009) is 96.88%, specificity – 21.51%, accuracy – 40.80%. Hypertriglyceridemia has the best diagnostic value for detecting retinal angiopathy in patients with SLE (diagnostic accuracy is significantly higher than 50.00%, p < 0.001).

The sensitivity of ↑ ALT (direct correlation, p = 0.031) as a marker of capillaritis was 75.00%, specificity – 79.83%, and accuracy – 79.68%. ↑ ALT is a diagnostically valuable marker for the detection of capillaritis (diagnostic accuracy is significantly higher than 50.00%, p < 0.001).

The sensitivity of the marker, namely ↓ hemoglobin (direct correlation, p = 0.016), for the detection of Raynaud's syndrome in patients with SLE, is 68.66%, specificity – 50.00%, accuracy – 60.00%; sensitivity of lymphopenia (direct correlation, p = 0.039) is 34.33%, specificity – 79.31%, accuracy – 55.20%; sensitivity of ↑ ESR (direct correlation, p = 0.007) is 82.09%, specificity – 37.93%, accuracy – 61.60%; sensitivity of ↑ small CIC (direct correlation, p = 0.004) as a marker reaches 100.00%, specificity – 22.73%, accuracy – 72.13%; the sensitivity of LE cells (direct correlation, p = 0.014) is 37.29%, specificity – 82.61%, accuracy – 57.14%; the sensitivity of ↓ C3 (direct correlation, p = 0.010) as a marker reaches 72.22%, specificity – 73.33%, accuracy – 72.73%; the sensitivity of ↓ C4 (direct correlation, p = 0.020) is 55.56%, specificity – 82.35%, accuracy – 68.57%. The optimal diagnostic value for the detection of Raynaud's syndrome in patients with SLE is ↓ C3 (p = 0.005).

The sensitivity of monocytosis (direct correlation, p = 0.009) as a marker of livedo reticularis in patients with SLE is 20.00%, specificity – 95.56%, accuracy – 74.40%; sensitivity of ↑ γ-globulins (direct correlation, p = 0.044) reaches 50.00%, specificity – 69.01%, accuracy – 63.92%; sensitivity of ↑ ANA (direct correlation, p = 0.044) as a marker reaches 91.43%, specificity – 22.22%, accuracy – 41.60%. The best laboratory marker for detecting livedo reticularis in patients with SLE is ↑ γ-globulin (p = 0.003).
In patients with SLE with atherosclerosis, the sensitivity of ↑LDL (direct correlation, $p = 0.037$) as a marker is 100.00%, specificity – 31.25%, accuracy – 62.07%; sensitivity of LE-cells (direct correlation, $p = 0.049$) is 54.55%, specificity – 84.62%, accuracy – 70.83%; sensitivity of ↑C4 (direct correlation, $p = 0.044$) as a marker is 80.00%, specificity – 85.71%, accuracy – 83.33%. The best diagnostic value for the detection of atherosclerosis in patients with SLE is ↓C4 ($p = 0.010$).

Dyslipidemia and its association with atherosclerosis in patients with SLE was described by L. F. Bogmat, et al. [9]. The sensitivity of the marker, namely thrombocytopenia (direct correlation, $p = 0.037$), for the detection of MV1, is 35.29%, specificity – 80.00%, accuracy – 58.49%; sensitivity of lymphopenia (direct correlation, $p = 0.029$) is 36.36%, specificity – 78.57%, accuracy – 60.00%; sensitivity of ↑INR (direct correlation, $p = 0.015$) is 41.38%, specificity – 90.00%, accuracy – 61.22%; sensitivity of ↑anti-dsDNA (direct correlation, $p = 0.024$) is 90.91%, specificity – 22.86%, accuracy – 52.80%; sensitivity of ↑ANA (direct correlation, $p = 0.004$) reaches 92.59%, specificity – 26.47%, accuracy – 55.74%; sensitivity of ↑antiphospholipid antibodies IgG (direct correlation, $p = 0.046$) is 60.47%, specificity – 57.89%, accuracy – 59.26%. The best laboratory marker for the detection of MV1 in patients with SLE is ↑IgG antiphospholipid antibodies ($p = 0.048$). Similar results were published in a study by A.G. Mohammed and colleagues [10], who pointed to a significant association between mitral valve regurgitation and positive anti-dsDNA in patients with SLE.

It was found that in patients with SLE with MV thickening, the sensitivity of the thrombocytopenia marker (direct correlation, $p = 0.028$) was 38.46%, specificity – 79.10%, accuracy – 64.15%; the sensitivity of lymphopenia (direct correlation, $p = 0.003$) as a marker is 42.55%, specificity – 80.77%, accuracy – 66.40%; sensitivity of ↑ESR (direct correlation, $p = 0.049$) is 80.85%, specificity – 32.05%, accuracy – 50.40%; sensitivity of ↑LDL (direct correlation, $p = 0.011$) is 86.36%, specificity – 33.87%, accuracy – 55.66%; sensitivity of ↑IA (direct correlation, $p = 0.021$) as a marker reaches 68.18%, specificity – 51.61%, accuracy – 58.49%; sensitivity of ↑ANA (direct correlation, $p = 0.018$) reaches 91.49%, specificity – 24.00%, accuracy – 50.00%; sensitivity of ↑urine sediment (direct correlation, $p = 0.046$) is 48.89%, specificity – 65.38%, accuracy – 59.35%. Lymphopenia has the best diagnostic value for detecting MV thickening in patients with SLE ($p < 0.001$).

The sensitivity of erythropenia (direct correlation, $p = 0.001$) for detecting pericardial effusion is 55.56%, specificity – 84.16%, accuracy – 79.83%; the sensitivity of leukocytosis (direct correlation, $p = 0.048$) is 27.59%, specificity – 87.50%, accuracy – 64.42%; the sensitivity of ↑medium CIC (direct correlation, $p = 0.039$) for the detection of pericardial effusion is 66.67%, specificity – 69.23%, accuracy – 68.85%. The best laboratory marker for detecting pericardial effusion in patients with SLE is erythropenia ($p < 0.001$).

In patients with SLE with pulmonary hypertension, the sensitivity of the marker, namely ↑creatinine (direct correlation, $p = 0.015$), is 43.7%, specificity – 83.33%, accuracy – 78.23%; the sensitivity of hypercholesterolemia (direct correlation, $p = 0.006$) as a marker of pulmonary hypertension in patients with SLE is 93.75%, specificity – 39.81%, accuracy – 74.06%; the sensitivity of hypertriglyceridemia (direct correlation, $p = 0.018$) is 42.86%, specificity – 85.11%, accuracy – 79.63%; the sensitivity of ↑LDL (direct correlation, $p = 0.012$) reaches 100.00%, specificity – 29.35%, accuracy – 38.68%; the sensitivity of the marker, namely ↑IA (direct correlation, $p = 0.049$) is 78.57%, specificity – 46.74%, accuracy – 50.94%; the sensitivity of the presence of ↑anti-dsDNA (direct correlation, $p = 0.043$) is 100.00%, specificity – 19.27%, accuracy – 29.60%. The best diagnostic value for detecting pulmonary hypertension in patients with SLE is hypertriglyceridemia ($p < 0.001$).

The sensitivity of erythropenia (direct correlation, $p = 0.003$) for the detection of myocarditis is 44.00%, specificity – 84.04%, accuracy – 75.63%; the sensitivity of ↓hemoglobin (direct correlation, $p = 0.002$) reaches 82.76%, specificity – 46.88%, accuracy – 55.20%; sensitivity of monocytopenia (direct correlation, $p = 0.037$) is 27.59%, specificity – 87.50%, accuracy – 73.60%; sensitivity of ↑creatinine (direct correlation, $p = 0.021$) for detection of myocarditis is 34.48%, specificity – 84.21%, accuracy – 72.58%; sensitivity of hypoproteinemia (direct correlation, $p = 0.038$) is 17.39%, specificity – 96.20%, accuracy – 78.43%; the sensitivity of ↑AST (direct correlation, $p = 0.012$) was 34.48%, specificity – 86.17%, accuracy – 73.98%; the sensitivity of ↑ALT (direct correlation, $p = 0.004$) was 41.38%, specificity – 84.04%, accuracy – 73.98%; the sensitivity of ↑C-SP (direct correlation, $p = 0.001$) as a marker of myocarditis reaches 81.48%, specificity – 52.17%, accuracy – 58.82%; sensitivity of ↑LE-cells (direct correlation, $p = 0.043$) is 43.48%, specificity – 75.61%, accuracy – 68.57%; sensitivity of ↓C3 (direct correlation, $p = 0.002$) is 90.91%, specificity – 68.18%, accuracy – 75.76%; sensitivity of ↓C4 (direct correlation, $p < 0.001$) as a marker of myocarditis is 83.33%, specificity – 86.96%, accuracy – 85.71%. The best laboratory marker for detecting myocarditis in patients with SLE is ↓C4 ($p < 0.001$).

It was found that the sensitivity of erythropenia and lymphopenia (direct correlation, $p = 0.027$ and $p = 0.043$, respectively) for detecting symptomatic hypertension was 32.50 and 37.21%, specificity – 83.54 and 76.83%, accuracy – 66.39 and 63.20%, respectively; the sensitivity of hypoproteinemia, ↑ALT and ↑C-SP (direct correlation, $p < 0.001$, $p = 0.041$ and $p = 0.040$, respectively) is 20.59, 30.95 and 65.85%, respectively, specificity – 100.00, 82.72 and 50.00%, respectively, accuracy – 73.53, 65.04 and 55.46%, respectively; sensitivity of ↑LDL and ↑IA (direct correlation, $p = 0.022$, $p = 0.042$, respectively) reaches 86.49 and 67.57%, specificity – 31.88 and 49.28%, accuracy – 50.94 and 55.66%, respectively; sensitivity of ↑anti-dsDNA, ↑ANA, ↑antiphospholipid antibodies IgG, ↑
anti-SSA (Ro) (direct correlation, p = 0.020, 0.017, 0.023, 0.036, respectively) is 93.9 and 94.5 0.036, respectively) is 93.02, 92.68, 66.67, 88.89%, respectively, specificity = 21.95, 23.46, 56.86, 50.00%, respectively, accuracy = 46.40, 46.72, 60.49, 58.54%, respectively, the sensitivity of proteinuria (direct correlation, p = 0.002) as a marker of symptomatic hypertension reaches 48.84%, specificity = 78.05%, accuracy = 68.00%. Proteinuria has the best diagnostic value for detecting symptomatic hypertension in patients with SLE (p < 0.001).

It was determined that the sensitivity of erythropenia and ↑ γ-globulins (direct correlation, p = 0.005; p = 0.047, respectively) as markers of vein thrombosis reaches 71.43 and 80.00%, specificity = 81.25 and 67.03%, accuracy = 80.67 and 67.71%, respectively. The best laboratory marker for detecting vein thrombosis in patients with SLE is erythropenia (p < 0.001).

The second stage of the study allowed us to determine:

- the constellation of laboratory markers deviating from the reference values (CA = 0.67) in patients with SLE with retinal angiopathy (↑ LDL + ↑ IA + ↑ anti-ds DNA + ↑ ANA) (sensitivity = 75.00%, specificity = 62.37%, accuracy = 65.60%, p < 0.001), which has a closer relationship with retinal angiopathy than a single laboratory marker (CA = 0.55) in these patients; the constellation of markers (CC = 0.38) in patients with SLE with capillaritis (↑ β-globulins + ↑ IA + ↑ anti-ds DNA + ↑ antiphospholipid antibodies Ig M + ↑ anti-Sm + ↑ C4 (sensitivity = 100.00%, specificity = 84.30%, accuracy = 84.80%, p = 0.001)), which has a closer relationship with capillaritis than a single laboratory marker (CA = 0.84); the constellation of markers (CA = 0.55) in patients with SLE with Raynaud's syndrome (↑ ESR + ↑ small CIC + ↑ ANA + ↑ C4 (sensitivity = 62.69%, specificity = 67.24%, accuracy = 64.80%, p = 0.001)), which has a weaker association with Raynaud's syndrome than a separate laboratory marker ↓ C3 (CA = 0.75); the constellation of markers (CA = 0.50) in patients with SLE with livedo reticularis (↑ ESR + ↑ small CK + ↑ anti ds DNA + ↑ anti-Sm (sensitivity = 62.86%, specificity = 62.22%, accuracy = 62.40%, p = 0.007)), which has a closer relationship with sympathetic lesions than a single laboratory marker (CA = 0.40); the constellation of markers (CA = 0.94) in patients with SLE with atherosclerosis (↑ hemoglobin + ↑ LDL + ↑ ANA + ↑ C4 (sensitivity = 76.92%, specificity = 93.75%, accuracy = 86.21%, p < 0.001)), which has a closer relationship with atherosclerosis than a single laboratory marker (CA = 0.92); the constellation of markers (CA = 0.53) in patients with SLE with MVI (↑ ESR + ↑ anti-ds DNA + ↑ ANA + ↑ antiphospholipid antibodies Ig M (sensitivity = 56.36%, specificity = 71.43%, accuracy = 64.80%, p = 0.001)), which has a closer association with MVI than a single laboratory marker (CA = 0.40); the constellation of markers (CA = 0.58) in patients with SLE with MV thickness (↑ ESR + ↑ LDL + ↑ small CIC + ↑ ANA (sensitivity = 63.83%, specificity = 67.95%, accuracy = 66.40%, p = 0.001)), which has a closer relationship with sympathetic lesions than a single laboratory marker (CA = 0.51); the constellation of markers (CA = 0.86) in patients with SLE with pericardial effusion (erythropenia + ↑ C-RP + ↑ lupus anticoagulant (sensitivity = 59.09%, specificity = 90.29%, accuracy = 84.80%, p = 0.001)), which has a closer relationship with pericardial effusion than a single laboratory marker (CA = 0.74); the constellation of markers (CA = 0.79) in patients with SLE with pulmonary hypertension (hypercholesterolemia + ↑ LDL + ↑ anti-ds DNA + ↑ ANA (sensitivity = 87.50%, specificity = 55.05%, accuracy = 59.20%, p = 0.001)), which has a closer relationship with pulmonary hypertension than a single laboratory marker (CA = 0.62); the constellation of markers (CA = 0.71) in patients with SLE with myocarditis (erythropenia + ↑ C4 (sensitivity = 51.72%, specificity = 84.38%, accuracy = 76.80%, p < 0.001)), which has a weaker association with myocarditis than a separate marker ↓ C4 (CA = 0.94); the constellation of markers (CC = 0.39) in patients with SLE with endocarditis (↑ ESR + ↑ total fibrinogen + ↑ γ-globulins + hypercholesterolemia + ↑ anti-Sm (sensitivity = 100.00%, specificity = 91.87%, accuracy = 92.00%, p = 0.009)) the constellation of markers (CA = 0.78) in patients with SLE with symptomatic hypertension (↑ LDL + ↑ anti-ds DNA + ↑ ANA + ↑ anti-SSA (Ro) (sensitivity = 83.72%, specificity = 60.98%, accuracy = 68.80%, p < 0.001)), which has a closer relationship with sympathetic lesions than a single laboratory marker (CA = 0.54); the constellation of markers (CA = 0.90) in patients with SLE with vein thrombosis (erythropenia + ↓ hemoglobin + ↑ LDL + ↑ ANA (sensitivity = 71.43%, specificity = 88.14%, accuracy = 87.20%, p < 0.001)), which has a closer relationship with vein thrombosis than a single laboratory marker (CA = 0.83).

Conclusion.

The diagnostic value of individual laboratory markers and their constellations in terms of sensitivity, specificity and accuracy in patients with SLE with sympathetic lesions of CSO was determined, and it was stated that ↑ LDL + ↑ IA + ↑ anti-ds DNA + ↑ ANA have the highest diagnostic value for the diagnosis of retinal angiopathy; capillaritis - ↑ β-globulins + ↑ IA + ↑ anti-ds DNA + ↑ antiphospholipid antibodies Ig M + ↑ anti-Sm + ↓ C4; Raynaud's syndrome – an individual marker ↓ C3; livedo reticularis – ↑ ESR + ↑ small CIC + ↑ anti ds DNA + ↑ anti-sm; atherosclerosis – ↓ hemoglobin + ↑ LDL + ↑ ANA + ↓ C4; MV – ↑ ESR + ↑ anti-ds DNA + ↑ ANA + ↑ antiphospholipid antibodies Ig M; MV thickness – ↑ ESR + ↑ LDL + ↑ small CIC + ↑ ANA; pericardial effusion – erythropenia + ↑ C-RP + ↑ lupus anticoagulant; pulmonary hypertension – hypercholesterolemia + ↑ LDL + ↑ anti-ds DNA + ↑ ANA; myocarditis – an individual marker ↓ C4; endocarditis – ↑ ESR + ↑ total fibrinogen + ↑ γ-globulins + hypercholesterolemia + ↑ anti-Sm; symtomatic hypertension – ↑ LDL + ↑ anti-ds DNA + ↑ ANA + ↑ anti-SSA (Ro); vein thrombosis – erythropenia + ↑ hemoglobin + ↑ LDL + ↑ ANA.

REFERENCES

162
ქართული ქმნილობები

6. Order of the Ministry of Health of Ukraine No. 436 dated 03.07.2006 "On the approval of protocols for the providing medical care in the specialty "Cardiology" with changes introduced in accordance with Order of the Ministry of Health of Ukraine No. 455 dated 02.07.2014.

სისტემური წითელი მგლურა (SLE) არის ლაბორატორიული მარკერების დაზიანებების ნილობი. ლაბორატორიული მარკერებიმ ყველა შინაგან ორგანოს, მიტრალური სარქვლის პროლაფის – ↑ C3; მიტრალური სარქვლის ნაკლოვანების – ↑ anti-Sm; ათეროსკლეროზის – ↑ C4; ჩალკეული მარკერი anti-ds DNA +; ანტი-სფოლიპიდური ანტისხეულები ↑; ანტი-ΔS DNA +; დამატებული სიმკვრივის ლიპოპროტეიდები +; სიმკვრივი სარქვლის პროლაფის – →; პერიკარდიული გამონაჟონი – ↑; რეტიკულური ლივედო – ↑; ათეროგენური გამომკვრივები – ↑; სინტროპული დაზიანება – ↑; კვლევის მსვლელობისას ეტაპობრივად თავისი ძალა დაშლილი სიმკვრივი სარქვლის პროლაფის, რეტიკულური ლივედოს, ათეროგენურ გამომკვრივების ფაქტორზე.
Любовь Кобак, Орест Абрагамович, Ульяна Красной Волчанкой

Кровообращения у больных системных поражений органов системы кровообращения с диагностической ценностью. Маркеры, констелляции, коморбидные поражения, лабораторные нарушения, синтропические диагностика.

Цель исследования. Выяснить диагностическую ценность лабораторных маркеров синтропических поражений органов системы кровообращения у больных системной красной волчанкой.

Материалы, методологии исследования. В исследовании включены 125 больных СКВ с наличием поражений ОСК, среди которых подавляющее большинство женщин молодого возраста. Болевые стратификации при наличии синтропии. Синтропическими поражениями считали те, частота которых достоверно нарастала с повышением степени активности СКВ – это ангиопатия сетчатки, капиллярит, синдром А. Г. М. Рейно, ретиккулярное ливедо, атеросклероз, недостаточность митрального клапана, уплотнение митрального клапана, эндокардит, симптоматическая артериальная гипертензия, тромбоз вен. В ходе исследования поэтапно определяли диагностическую ценность отдельных лабораторных маркеров и их констелляций по чувствительности, специфичности и точности у больных СКВ с синтропическими поражениями ОСК и выбирали один из них с достоверно наибольшей диагностической ценностью для диагностики этих поражений. Статистически достоверной считали разницу, если p=0,05. Для определения тесноты связи между маркером и синтропическим поражением использовали коэффициент ассоциации и коэффициент контингенции. Связь считали подтвержденной, если коэффициент ассоциации ≥ 0,50 или коэффициент контингенции ≥ 0,30.

Результаты. Изучали диагностическую ценность отдельных лабораторных маркеров и их констелляций по чувствительности, специфичности и точности у больных СКВ с синтропическими поражениями ОСК. Выяснили, что наибольшую диагностическую ценность для диагностики ангиопатии сетчатки имеют констелляция с антифосфолипидных антител Ig М; уплотнение митрального клапана – антифосфолипидных антител Ig М; перикардиального выпота – отдельный маркер ангиопатии сетчатки, капиллярит, синдром А. Г. М. Рейно, ретиккулярное ливедо, атеросклероз, недостаточность митрального клапана – отдельный маркер ангиопатии сетчатки. Связь считали подтвержденной, если коэффициент ассоциации ≥ 0,50 или коэффициент контингенции ≥ 0,30.

Выводы. Для каждого синтропического поражения у больных системной красной волчанкой определен отдельный лабораторный маркер или их констелляция, имеющая наибольшую диагностическую ценность для диагностики этих поражений.

Ключевые слова: системная красная волчанка, поражение органов системы кровообращения, синтропические поражения, коморбидные поражения, лабораторные маркеры, констелляции, диагностическая ценность.