ГЕОРГИАН МЕДИЦИНАЛЬНЫЙ НОВОСТИ

ЕЖЕМЕСЯЧНЫЙ НАУЧНЫЙ ЖУРНАЛ
Медицинские новости Грузии

ТЫСЯЧИ ЛЕТ ЖИЗНИ
GMN: Georgian Medical News is peer-reviewed, published monthly journal committed to promoting the science and art of medicine and the betterment of public health, published by the GMN Editorial Board since 1994. GMN carries original scientific articles on medicine, biology and pharmacy, which are of experimental, theoretical and practical character; publishes original research, reviews, commentaries, editorials, essays, medical news, and correspondence in English and Russian.

GMN is indexed in MEDLINE, SCOPUS, PubMed and VINITI Russian Academy of Sciences. The full text content is available through EBSCO databases.

GMN: Медицинские новости Грузии - ежемесячный рецензируемый научный журнал, издаётся Редакционной коллегией с 1994 года на русском и английском языках в целях поддержки медицинской науки и улучшения здравоохранения. В журнале публикуются оригинальные научные статьи в области медицины, биологии и фармации, статьи обзорного характера, научные сообщения, новости медицины и здравоохранения. Журнал индексируется в MEDLINE, отражён в базе данных SCOPUS, PubMed и ВИНИТИ РАН. Полнотекстовые статьи журнала доступны через БД EBSCO.

WEBSITE
www.geomednews.com
К СВЕДЕНИЮ АВТОРОВ!

При направлении статьи в редакцию необходимо соблюдать следующие правила:

1. Статья должна быть представлена в двух экземплярах, на русском или английском языках, напечатанная через полтора интервала на одной стороне стандартного листа с шириной левого поля в три сантиметра в три сантиметра. Используемый компьютерный шрифт для текста на русском и английском языках - Times New Roman (Кириллица), для текста на грузинском языке следует использовать AcadNusx. Размер шрифта - 12. К рукописи, напечатанной на компьютере, должен быть приложен CD со статьёй.

2. Размер статьи должен быть не менее десяти и не более двадцати страниц машинописи, включая указатель литературы и резюме на английском, русском и грузинском языках.

3. В статье должны быть освещены актуальность данного материала, методы и результаты исследования и их обсуждение.

При представлении в печать научных экспериментальных работ авторы должны указывать вид и количество экспериментальных животных, применяющие методы обезболивания и усыпления (в ходе острых опытов).

4. К статье должны быть приложены краткое (на полстраницы) резюме на английском, русском и грузинском языках (включающее следующие разделы: цель исследования, материал и методы, результаты и заключение) и список ключевых слов (key words).

5. Таблицы необходимо представлять в печатной форме. Фотокопии не принимаются. Все цифровые, итоговые и процентные данные в таблицах должны соответстовать таковым в тексте статьи. Таблицы и графики должны быть озаглавлены.

6. Фотографии должны быть контрастными, фотокопии с рентгенограмм - в позитивном изображении. Рисунки, чертежи и диаграммы следует озаглавить, пронумеровать и вставить в соответствующее место текста в tiff формате.

7. Фамилии отечественных авторов приводятся в оригинальной транскрипции.

9. Для получения права на публикацию статья должна иметь от руководителя работы или учреждения визу и сопроводительное отношение, написанное или напечатанное на бланке и заверенное подписью и печатью.

10. В конце статьи должны быть подписи всех авторов, полностью приведены их фамилии, имена и отчества, указаны служебный и домашний номера телефонов и адреса или иные координаты. Количество авторов (соавторов) не должно превышать пяти человек.

11. Редакция оставляет за собой право сокращать и исправлять статьи. Корректировка авторам не высылается, вся работа и сверка проводится по авторскому оригиналу.

12. Недопустимо направление в редакцию работ, представленных к печати в иных издательствах или опубликованных в других изданиях.

При нарушении указанных правил статья не рассматривается.
REQUIREMENTS

Please note, materials submitted to the Editorial Office Staff are supposed to meet the following requirements:

1. Articles must be provided with a double copy, in English or Russian languages and typed or computer-printed on a single side of standard typing paper, with the left margin of 3 centimeters width, and 1.5 spacing between the lines, typeface - Times New Roman (Cyrillic), print size - 12 (referring to Georgian and Russian materials). With computer-printed texts please enclose a CD carrying the same file titled with Latin symbols.

2. Size of the article, including index and resume in English, Russian and Georgian languages must be at least 10 pages and not exceed the limit of 20 pages of typed or computer-printed text.

3. Submitted material must include a coverage of a topical subject, research methods, results, and review.

Authors of the scientific-research works must indicate the number of experimental biological species drawn in, list the employed methods of anesthetization and soporific means used during acute tests.

4. Articles must have a short (half page) abstract in English, Russian and Georgian (including the following sections: aim of study, material and methods, results and conclusions) and a list of key words.

5. Tables must be presented in an original typed or computer-printed form, instead of a photocopied version. Numbers, totals, percentile data on the tables must coincide with those in the texts of the articles. Tables and graphs must be headed.

6. Photographs are required to be contrasted and must be submitted with doubles. Please number each photograph with a pencil on its back, indicate author’s name, title of the article (short version), and mark out its top and bottom parts. Drawings must be accurate, drafts and diagrams drawn in Indian ink (or black ink). Photocopies of the X-ray photographs must be presented in a positive image in tiff format. Accurately numbered subtitles for each illustration must be listed on a separate sheet of paper. In the subtitles for the microphotographs please indicate the ocular and objective lens magnification power, method of coloring or impregnation of the microscopic sections (preparations).

7. Please indicate last names, first and middle initials of the native authors, present names and initials of the foreign authors in the transcription of the original language, enclose in parenthesis corresponding number under which the author is listed in the reference materials.

In GMN style for each work cited in the text, a bibliographic reference is given, and this is located at the end of the article under the title “References”. All references cited in the text must be listed. The list of references should be arranged alphabetically and then numbered. References are numbered in the text [numbers in square brackets] and in the reference list and numbers are repeated throughout the text as needed. The bibliographic description is given in the language of publication (citations in Georgian script are followed by Cyrillic and Latin).

9. To obtain the rights of publication articles must be accompanied by a visa from the project instructor or the establishment, where the work has been performed, and a reference letter, both written or typed on a special signed form, certified by a stamp or a seal.

10. Articles must be signed by all of the authors at the end, and they must be provided with a list of full names, office and home phone numbers and addresses or other non-office locations where the authors could be reached. The number of the authors (co-authors) must not exceed the limit of 5 people.

11. Editorial Staff reserves the rights to cut down in size and correct the articles. Proof-sheets are not sent out to the authors. The entire editorial and collation work is performed according to the author’s original text.

12. Sending in the works that have already been assigned to the press by other Editorial Staffs or have been printed by other publishers is not permissible.

Articles that Fail to Meet the Aforementioned Requirements are not Assigned to be Reviewed.
ქოლოთის სრულყოფილი სატესტო ნაწილი დამდეგ შემდგომ ქვედან ქმნის:

1. ჰარპეტი უნდა ქიბით იყოთო, ყოველ დღეს დედახალხურ სახელწოდება იყოფება 1 ადგილზე. 3 სმ სიგრძის სიმძლები უნდა დასუსტდე, ხოლო ჩინების ამრეცხილებელი ქვეჯამ უნდა მოხდეს.
2. ჰარპეტი მოქმედების დროს ჯგუფებში, არსებობს ყველაზე ფიჭვით თვალით.
3. ჰარპეტთა საშინაო ჰარემებში: ჰარპეტ ჯგუფში უნდა ჰარემით იყოთო, ხოლო ქმედების გამო, ჰარემებში თუ ჰარემებთან იყოთო. მოქმედი ქმედებით ჰარემში გამოიყოთ.
4. ჰარპეტის სიგრძის საბოლოო ფაქტორი, რომელიც ხარშობს ქმედება განლაგება შეიძლება წარმოქმნილიყო ჰარემში, რელექტროს წარსულში ჭერი და მოქმედი ქმედები.
5. ჰარპეტის სიგრძის საბოლოო ფაქტორმა დედახალხურ სახელწოდება იყოფება 1 ადგილზე.
6. ჰარპეტის სიგრძის საბოლოო ფაქტორმა დედახალხურ სახელწოდება იყოფება 1 ადგილზე.
7. ჰარპეტის სიგრძის საბოლოო ფაქტორმა დედახალხურ სახელწოდება იყოფება 1 ადგილზე.
Tsitsino Abakelia, Ketevan Lashkhi, Sophio Kakhadze.
BRIDGING GAP BETWEEN PRE AND POSTOPERATIVE PROSTATE BIOPSIES: PI RADS CORRELATION WITH FINAL HISTOPATHOLOGICAL DATA
...6-12

Sopio Gvazava, Vladimir Margvelashvili, Nino Chikhladze, Diana Dulf, Corinne Peek-Asa.
A RETROSPECTIVE STUDY OF THE MAXILLOFACIAL INJURIES IN TWO EMERGENCY DEPARTMENTS IN TBILISI, GEORGIA
..13-19

EXPENDITURE ON MEDICINES IN A MULTIDISCIPLINARY HOSPITAL IN ALMATY BASED ON ABC /VEN ANALYSIS
..20-23

Tchernev G.
NITROSOGENESIS OF SKIN CANCER: THE NITROSAMINE CONTAMINATION IN THE CALCIUM CHANNEL BLOCKERS
(AMLODIPINE), BETA BLOCKERS (BISOPROLOL), SARTANS (VALSARTAN/LOSARTAN), ACE INHIBITORS (PERINDOPRIL/
ENALAPRIL), TRICYCLIC ANTIDEPRESSANTS (MELITRACEN), SSRS (PAROXETINE), SNRIS (VENLAFAXINE) AND
METFORMIN: THE MOST PROBABLE EXPLANATION FOR THE RISING SKIN CANCER INCIDENCE
...24-32

Dimakov D.A, Shakirianova A.V.
INFLUENCE OF PROFICIENCY OF SYNTHETIC FOLIC ACID ON THE NEUROLOGICAL SYMPTOMS OF RATS
..33-36

Zamzam AR. Aziz, Entedhar R. Sarhat, Zaidan J. Zaidan.
ESTIMATION OF SERUM FERROPORTIN AND LIVER ENZYMES IN BREAST CANCER PATIENTS
..37-41

Tereza Azatyan.
THE RHEOENCEPHALOGRAPHIC STUDY OF THE INTERHEMISPHERIC ASYMMETRY OF CEREBRAL BLOOD FLOW IN
HEALTHY AND MENTALLY RETARDED CHILDREN..42-46

Ahmed T. Jihad, Entedhar R. Sarhat.
ALTERED LEVELS OF ANTI-MULLERIAN HORMONE AND HEPcidIN AS POTENTIAL BIOMARKERS FOR POLycYSTIC OVARY
SYndrome..47-51

EFFECTS OF DIMETHYL SULFOXIDE ON HIPPOCAMPAL ACTIVITY IN A ROTENONE-INDUCED RAT MODEL OF PARKINSON’S
DISEASE..52-56

Labeeb H. Al-Alsadoon, Ghada A. Taqa, Maha T. Al-Saffar.
EVALUATION OF PAIN-KILLING ACTION OF ACETYLSALICYLIC ACID NANOFACTiCLES ON THERMAL NOCICEPTION IN
MICE..57-61

Olesia Kornu, Anatolii Kornus, Olha Skyba, Iryna Mazhak, Svitlana Budnik.
FORECASTING THE POPULATION MORTALITY RATE FROM CARDIOVASCULAR DISEASES AS A CONDITION OF THE
ECONOMIC SECURITY OF THE STATE..62-66

Safi K. Yahya, Haiman A. Tawfiq, Yasar Saber.
STIMULATION OF B3-RECEPTOR-INDUCED CENTRAL NEUROGENIC EDEMA AND VITIATED ELECTROLYTE HOMEOSTASIS
IN EXPERIMENTAL RODENT MODEL..67-70

Hovhannisyan.
PRODUCTIVITY AND SELENIUM ENRICHMENT OF STEVIA IN HYDROPONIC AND SOIL CULTIVATION SYSTEMS IN THE
ARARAT VALLEY..71-76

Ezzuldin Yaseen Aljumaily, Ali R. Al-Khatib.
HARDNESS AND ELASTIC MODULUS ASSESSMENT FOR TWO ALIGNER MATERIALS BEFORE AND AFTER
THERMOCYCLING: A COMPARATIVE STUDY..77-82

Tchernev G.
NITROSOGENESIS OF CUTANEOUS MELANOMA: SIMULTANEOUSLY DEVELOPMENT OF PRIMARY CUTANEOUS THICK
MELANOMA OF THE BREAST, THIN MELANOMA/ DYSPLASTIC MOLE OF THE BACK DURING PARALLEL INTAKE OF
BISOPROLOL, AMLODIPINE AND VALSARTAN/ HCT: NITROSAMINE POLYCONTAMINATION IN THE MULTIMEDICATION AS
THE MOST POWERFUL SKIN CANCER TRIGGER..83-88

Manish Tyagi, Uzma Noor Shah, Geetika Patel M, Varun Toshniwal, Rakesh AshokraoBhongade, Pravesh Kumar Sharma.
The IMPACT OF SLEEP ON PHYSICAL AND MENTAL HEALTH: IMPORTANCE OF HEALTHY SLEEP HABITS
..89-94

Musayev S.A, Gurbanov E.F.
DYNAMICS OF THE MECHANICAL FUNCTION OF THE LEFT ATRIUM IN PATIENTS WITH ISCHEMIC MITRAL VALVE
REGURGITATION..95-98
Abrahamovych Orest, Abrahamovych Uliana, Chemes Viktoriia, Tsyhanyk Liliya, Mariia Ferko.

INDICATORS OF BONE METABOLISM IN PATIENTS WITH RHEUMATOID ARTHRITIS WITH IMPAIRED BONE MINERAL DENSITY: CHARACTERISTICS, THEIR FEATURES AND DIAGNOSTIC VALUE... 99-104

THE ROLE OF IMMUNOTHERAPY IN CANCER TREATMENT: CHECKPOINT INHIBITORS, CAR-T CELLS, AND VACCINES.............. 105-112

A METHOD FOR IMPROVING THE PROFESSIONAL PERFORMANCE AND RELIABILITY OF PERSONS DRIVING HIGH-SPEED VEHICLES... 113-116

Bhupesh Goyal, Sandeep Bishnoi, Suphiya Parveen, Devanshu Patel J, Yasmeen, Anupama Nanasaheb Tarekar.

MANAGING ARTHRITIS PAIN: MEDICATIONS AND LIFESTYLE CHANGES.. 117-122

Sergienko Ruslan, Vovchenko Anna, Kravchuk Lyudmila, Zinchenko Vitaliy, Ivanovska Olha.

ANALYSIS THE RESULTS OF SURGICAL TREATMENT AND EARLY REHABILITATION OF PATIENTS WITH MASSIVE TEARS THE ROTATOR CUFF THE SHOULDER... 123-128

NEURODEGENERATION AND NMDA.. 129-136

Dilshad Ahmad Usmani, Kavina Ganapathy, Devanshu Patel J, Anchal Saini, Jaya Gupta, Shalini Dixit.

THE ROLE OF EXERCISE IN PREVENTING CHRONIC DISEASES: CURRENT EVIDENCE AND RECOMMENDATIONS........... 137-142

Tchernev G.

Controversies and paradoxes in melanoma surgery: consolidating two surgical sessions into one and sparing the sentinel lymph node- a possible guarantee of recurrence-free survival... 143-146
A METHOD FOR IMPROVING THE PROFESSIONAL PERFORMANCE AND RELIABILITY OF PERSONS DRIVING HIGH-SPEED VEHICLES

L.G. Buinov¹, L.A. Sorokina¹, S.N. Proshin¹, N.A. Fedorov², M.N. Magradze², A.B. Shangin¹, S.V. Alekseev¹, T.V. Kot¹, P.A. Torkunov³.

¹College 1Herzen state pedagogical university, St. Petersburg, Russia.
²Petersburg State Pediatric University, Russia.
³St. Petersburg Medical and Social Institute, Russia.

Abstract.
Recently, due to the emergence of a variety of modifications of air, land, water vehicles and an increase in their speed and maneuverability, the number of people with severe manifestations of motion sickness has also increased. The relevance of this problem is dictated by the fact that, despite significant achievements in the field of preventive medicine, a significant number of people prone to motion sickness have been observed to date. Thus, among persons using land modes of transport, the percentage of sick people reaches 15.0%, air modes 20.0%, while using water modes of transport, the number of sick people reaches 30.0%. The significance of this problem is dictated by the fact that the psycho-physiological capabilities of our body do not keep pace with the rapidly increasing speed-maneuvering characteristics of vehicles.

Key words. Motion sickness syndrome, ladasten, preventive medicine, high-speed maneuverable vehicles, statokinetic stability.

Introduction.
At present, the problem is of particular importance for persons directly driving high-speed vehicles. This is due to the fact that a good functional state and a high level of performance largely determine the accuracy and timeliness of the performed control movements. While the price of a mistake is commensurate with the loss of health or life of an auto-moto-bicycle racer, hang glider, snowboarder, parachutist, surfer, yachtman, etc. The significance of this problem is dictated by the fact that the psycho-physiological capabilities of our body do not keep pace with the rapidly increasing speed-maneuvering characteristics of vehicles. As a result, a person is sometimes affected by an excessive complex of angular, linear, and centripetal accelerations, causing vestibulo-somatic / vegetative / sensory reactions, which in turn worsen not only well-being, but also the results of professional activity. Thus, it was established that pronounced accelerations negatively affect the bioelectric activity of the brain and conditioned reflex activity, spatial orientation, and accuracy of control movements. They increase the number of gross errors and kurtosis of reactions, thereby negatively affecting the safety of movement [1-15].

Aim. The purpose of this work was to study the effectiveness of the combined use of special physical exercises and the drug ladasten in increasing the vestibular stability of persons driving high-speed and highly maneuverable vehicles.

Materials and methods.
The studies were carried out in the first half of the day, on the basis of the Department of Otorhinolaryngology of the Military Medical Academy named after. CM. Kirov (St. Petersburg).

The subjects were men aged 19-20 years with a diagnosis of "healthy", the tolerance time of continuous cumulation of Coriolis accelerations (hereinafter referred to as CCA) of which was less than 2 minutes. Before the start of the experiment, all subjects were familiarized with the plan of the upcoming research, the methods used and the research protocol. Voluntary written consent to participate in the research was obtained. After that, the persons of the experimental group performed special physical exercises for a week, while taking the drug ladasten. Persons in the control group did not exercise, they took coated starch tablets. After the course application of physical exercises and ladasten, all subjects were re-examined in the original volume. Then the examination in the same volume was repeated after one, two, or three weeks. In the course of the research, the duration of the tolerance of NCFA performed on an electro-rotating chair with program control was determined. The results were evaluated according to the traditional method of S.S. Markaryan [11]. At the same time, the degree of severity of the sensory, vegetative, and somatic components of vestibular reactions was assessed, expressed in the form of physiological manifestations and subjective sensations: the severity of a feeling of heat, heaviness in the head, dizziness, discomfort in the stomach, hypersalivation, hyperhidrosis, defensive movements, duration of postrotational nystagmus. To quantify the degree of their severity, in a preliminary series of studies involving 72 people, a scoring system was developed: 0 - no sensations; 1 - weakly expressed; 2 - strong feelings. Special physical exercises: subjects in a standing position with their eyes open, under a metronome, during the first two minutes performed head movements: head turns to the right - to the left, head tilts forward - backward, then right - left. Each type of movement was performed for 30 seconds, followed by a pause of 5 seconds, followed by head tilts in the prescribed sequence. For the first minute, the subjects performed head tilts while standing in one place, and then while walking. Special physical exercises were performed with a daily increase in training time by 10.0 seconds. The drug ladasten, as well as starch tablets, was taken in the first half of the day, per os, 100 mg each, during the week. The static stabilometric test of complex functional computer stabilography (hereinafter referred to as CST CFKS) was performed using a stabilograph ST-02, immediately after graduation from NKUK. The subjects performed two trials: the first with open eyes and a gaze hold on an object 5.0 meters away. The second is with closed eyes. The duration of each test is 20.0 seconds, the interval between them is 1.0 minutes. When performing tests, indicators of the average rate of increase in the length and area of the statokinesiogram, the amplitude of oscillation (hereinafter - AK) and the coefficient of asymmetry (hereinafter - KA), the projection of the common
center of gravity (hereinafter - POCG) in the sagittal and frontal planes and directions, respectively, were recorded. Statistical processing of the obtained data was performed using the Anova software package. For each sample of indicators, the numerical characteristics of the distribution were calculated. The significance of differences between the compared samples was assessed using Student's parametric t-test.

Results.

The results obtained in the course of the studies carried out allow us to conclude that the weekly combined use of special physical exercises and the pharmacological drug ladasten significantly improves the tolerance of NCAA by the persons of the experimental group. At the same time, a significant decrease in the severity of the sensory, vegetative, and somatic components of vegetative reactions was noted (Table 1). Thus, in the individuals of the experimental group, there was an increase in the tolerability of the NCAA by 53.1% compared with the baseline. Indicators characterizing the feeling of heat decreased by 60.0%, heaviness in the head by 60.0%, dizziness by 50.0%, discomfort in the stomach by 60.0%. At the same time, there was a decrease in the severity of hypersalivation by 46.7%, hyperhidrosis by 50.0% and the severity of protective movements by 50.0%. The observed positive dynamics of indicators as a whole indicates that the persons of the experimental group began to better endure NCUC on an electro-rotating chair.

The positive dynamics of the studied indicators in the experimental group are consistent with the positive dynamics of the indicators obtained during the test with open eyes in the SST of the CPKS after the NCUK (Table 2).

In the process of research, the duration of the achieved positive effect was also determined. To do this, after a course of special physical exercises in combination with the drug ladasten, the initial examination was repeated after one, two, or three weeks. Analysis of the data obtained allows us to say that the greatest value of the time of tolerance to the NCAA in the subjects of the experimental group was noted immediately after a week of special physical exercises in combination with the drug ladasten. After that, the achieved values began to gradually decrease and by the end of the third week they practically returned to their original values: “Before” - (98.1±5.6), “After” - (150.2±7.4*), “In one week” - (145.8±7.8*), “In two weeks” - (129.3±8.1*), “In three weeks” - (99.4±6.5) after course impact.

<table>
<thead>
<tr>
<th>Investigated indicators</th>
<th>Experimental groups</th>
<th>Control groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
</tr>
<tr>
<td>Transfer time NKUK (sec.)</td>
<td>98.1±5.6</td>
<td>150.2±7.4*</td>
</tr>
<tr>
<td>Feeling hot (points)</td>
<td>0.5±0.03</td>
<td>0.2±0.05*</td>
</tr>
<tr>
<td>Feeling of heaviness in the head (points)</td>
<td>1.0±0.07</td>
<td>0.4±0.03*</td>
</tr>
<tr>
<td>Dizziness (points)</td>
<td>0.8±0.06</td>
<td>0.4±0.07*</td>
</tr>
<tr>
<td>Discomfort in the stomach (points)</td>
<td>0.5±0.06</td>
<td>0.2±0.08*</td>
</tr>
<tr>
<td>Hypersalivation (points)</td>
<td>1.5±0.06</td>
<td>0.8±0.07*</td>
</tr>
<tr>
<td>Hyperhidrosis (points)</td>
<td>1.2±0.07</td>
<td>0.6±0.08*</td>
</tr>
<tr>
<td>Defense moves (points)</td>
<td>0.6±0.08</td>
<td>0.3±0.06*</td>
</tr>
<tr>
<td>Duration of nystagmus (sec.)</td>
<td>17.5±1.4</td>
<td>11.3±1.8*</td>
</tr>
<tr>
<td>Number of test subjects</td>
<td>64</td>
<td>64</td>
</tr>
</tbody>
</table>

*Note: significance of differences: * p<0.05 compared to baseline.

Table 1. Psychophysiological indicators of the subjects "Before" and "After" the course of physical exercises in combination with the pharmacological drug ladasten (X±m).

<table>
<thead>
<tr>
<th>Investigated indicators</th>
<th>Experimental groups</th>
<th>Control groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
</tr>
<tr>
<td>Open eye test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length increase rate (mm/s)</td>
<td>38.9±1.7</td>
<td>35.4±1.6*</td>
</tr>
<tr>
<td>Area increase rate (mm²/s)</td>
<td>67.5±3.1</td>
<td>61.0±3.3*</td>
</tr>
<tr>
<td>AK POCT, frontal plane (mm)</td>
<td>7.3±0.5</td>
<td>6.2±0.6*</td>
</tr>
<tr>
<td>AC POCT, sagittal plane (mm)</td>
<td>7.4±0.4</td>
<td>6.3±0.5*</td>
</tr>
<tr>
<td>KA, frontal direction (%)</td>
<td>7.2±0.6</td>
<td>6.1±0.5*</td>
</tr>
<tr>
<td>CA, sagittal direction (%)</td>
<td>7.3±0.4</td>
<td>6.4±0.6*</td>
</tr>
<tr>
<td>Eyes closed test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length increase rate (mm/s)</td>
<td>44.3±4.5</td>
<td>44.8±4.6</td>
</tr>
<tr>
<td>Area increase rate (mm²/s)</td>
<td>64.6±4.2</td>
<td>62.5±4.5</td>
</tr>
<tr>
<td>AK POCT, frontal plane (mm)</td>
<td>8.0±0.8</td>
<td>7.9±0.9</td>
</tr>
<tr>
<td>AC POCT, sagittal plane (mm)</td>
<td>7.3±0.5</td>
<td>7.2±0.8</td>
</tr>
<tr>
<td>KA, frontal direction (%)</td>
<td>7.2±0.8</td>
<td>7.3±0.7</td>
</tr>
<tr>
<td>CA, sagittal direction (%)</td>
<td>7.3±0.8</td>
<td>7.2±0.7</td>
</tr>
</tbody>
</table>

*Note: significance of differences: * p<0.05 compared to baseline.
Discussion.

The vestibular stability of a person largely depends on the adequacy of his psychophysiological reserves, which, under excessive influence of dynamic factors of movement, play a significant role in matters of professional performance, safety, and reliability of persons whose activities are related to the management of high-speed vehicles. One of the factors negatively affecting the level of vestibular stability is hypoxia. It has been proven that ischemic changes lead to functional insufficiency and deterioration of coherence in the work of various structures of the central nervous system and analyzers (visual, vestibular, auditory, etc.) that display space [9,10,14,15]. In this regard, one of the effective directions in the pathogenetic correction of an insufficient level of vestibular stability, improving the functioning of the central nervous system and analyzers, is physical exercise in the form of regular and adequately selected loads [4,7,13,15]. The mechanism of action of the drug ladasten is associated with increased release of dopamine from presynaptic terminals, blockade of its reuptake and increased biosynthesis due to the expression of the tyrosine hydroxylase gene, as well as with its modulating effect on the GABA-benzodiazepine-chlorionoform receptor complex, which eliminates the decrease in benzodiazepine reception that develops during stress [15]. The improvement of vestibular stability under the influence of the combined action of physical training and ladasten is based on the optimization of activity, primarily of the central nervous system, in combination with a change in the sensitivity thresholds of analyzers that display space. Which ultimately contributes to the optimization of the activity of the functional systems of the human body under conditions of excessive exposure to alternating accelerations [2,4,5,9,12,14].

Conclusion.

1. Weekly performance of special physical exercises in combination with the drug ladasten significantly increases the time of tolerance to the NCAA, while reducing the severity of the sensory, vegetative, and somatic components of vestibular reactions.
2. The greatest value of the NCUK tolerance time was noted immediately after the course of physical exercises in combination with ladasten.
3. A significant positive effect from the combined use of physical exercises and the drug ladasten lasts up to two weeks.

REFERENCES
фактом что, несмотря на значимые достижения в области профилактической медицины, до настоящего времени отмечается значительное количество лиц подверженных укачиванию. Так, среди лиц, использующих наземные виды транспорта, процент укачиваемых достигает 15,0%, воздушные виды 20,0% при использовании водных видов транспорта число укачиваемых достигает 30,0%. Значимость этой проблемы продиктована тем фактом, что психофизиологические возможности нашего организма не успевают за стремительно возрастающими скоростно-меневренными характеристиками транспортных средств передвижения.

Ключевые слова. Синдром укачивания, ладастен, профилактическая медицина, скоростно-меневренные транспортные средства передвижения, статокинетическая устойчивость.