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Aging, the time-related decline of physiological functions,
has its consequences on different levels and systems of the or-
ganism [1,2]. The brain is especially vulnerable to the aging
process. Many neurological and neurodegenerative disorders,
such as Parkinson disease, Alzheimer disease, diabetes, or cog-
nitive and emotional disturbances often accompany aging [3,4].
Cognition is important for physical and cognitive well-being
across the life span [5,6]. However, sometimes even normal
aging, which is not accompanied with age-related pathological
states, might be associated with the impairments in cognitive
sphere and structural vulnerability of cognitive brain. [7,8]. Due
to high significance of this issue, the relationships between ag-
ing and cognition is largely evaluated using various approaches.
Numerous data, which were gained from task-related functional
magnetic resonance imaging and behavioral studies, indicate
to different levels of disorders in memory processes, process-
ing speed, decision-making, attention, perception, etc. [9,10].
Morphological studies also indicate to structural modifications
in cognitive regions (the decrease of synapse and spine densi-
ties, or the changes in grey matter volume) [11,12]. However,
there are still many gaps regarding the consequences of aging
on cognitive brain. Of special interest should be comparative
study of the fine architecture of cognitive areas in experimental
animals from different age groups.

Recently, using behavioral and electron-microscopic ap-
proaches for studying aged rats, we saw manifestation of anxi-
ety-like behavior and associated alterations in the ultrastructure
of the central amygdala, involved in such behavior [13]. In the
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present electron microscopic research, we are focused on the
effects of aging on the ultrastructure of limbic hippocampus —
critical area for many cognitive abilities. Specifically, in adult,
adolescent and aged male Wistar rats, the ultrastructure of CA1
area, the number of presynaptic and postsynaptic mitochondria,
and total number of synaptic vesicles in axo-dendritic synapses
of this area were evaluated.

Material and methods. The study included adolescents (P30-
36), adult (P125-130) and aged (P330-340) male Wistar rats — 4
animals in each age group. The rats were housed individually, in
wire-top polypropylene cages (30-cm width x 30 cm length x 25
cm height) and maintained on a 12-h light/dark cycle. Standard
food pellets and tap water were ad libitum. The animal mainte-
nance and electron microscopic procedures were conducted in
accordance with European Union Directive on the protection of
animals used for scientific research. The Committee of Animal
Care at . Beritashvili Center of Experimental Biomedicine ap-
proved the protocols.

Conventional EM technique, described in our earlier studies
was used [13,14,15,16]. Specifically, after pentobarbital injec-
tion (100 mg/kg), the animals underwent transcardiac perfusion
with ice cold heparinized 0.9% NaCl, followed by 500 mL of 4%
paraformaldehyde and 2.5% glutaraldehyde in 0.1 M phosphate
buffer, pH 7.4, perfusion pressure - 120 mm Hg. The left hemi-
sphere brain tissue blocks containing the CAl area, were cut
into 400 pum thick coronal slices and post-fixed in 1% osmium
tetroxide. Then, the area was identified with an optical micro-
scope Leica MM AF, cut out from the coronal slices, dehydrated
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in ethanol and acetone and embedded in araldite. From araldite
blocks, 70-75 nm thick sections were prepared with an ultra-
microtome Leica EM UC7. The sections were placed on 200-mesh
copper grids, double-stained with uranyl-acetate and lead-citrate,
and examined with JEM 1400 (JEOL, Japan). From each rat, every
seventh section — totally 10 sections were evaluated.

Quantitative EM analysis: On EM micrographs, the number
and area of pre- and postsynaptic mitochondria, and total num-
ber of synaptic vesicles (SVs) were evaluated. The measure-
ments were performed on 240 micrographs (600 dpi tiff files,
scale bar — 500 nm): 80 micrographs per group, 20 micrographs
from each animal. ”Image J” software was used. The approach is
described in our previous publications [16,18-20].

Statistical analysis of quantitative data was carried out in a
blind manner. The data were processed by Website for Statisti-
cal Computation VassarStats (http://vassarstats.net). Two-way
ANOVA followed by Tukey HSD test was used, where main
effects of two factors “age” and “location” (pre vs post synaptic)
and their interaction were analyzed. In the case of mitochondria,
multiple comparisons were done to determine the differences in
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mitochondrial area and their quantity in the pre- and postsynap-
tic compartments of axo-dendritic hippocampal synapses in ado-
lescent, adult and aged animals. The P-value less than 0.05 was
considered as statistically significant. The data are presented as
a mean + standard error of the mean (SEM).

Results and discussion. The ultrastructure of CA1 area in
adolescent and adult rats was almost the same: absolute major-
ity of neurons, glial cells and synapses had normal organization,
but in a few neurons of adult animals, small concentrations of
different types of lipofuscin and lipid granules were observed.
However, distinct ultrastructure was observed in about 15% of
cells of senescent rats. Thus, the increased number of different
types of lysosomes, granules of lipofuscin with vacuoles, and
moderately swollen cisterns of Golgi complex and endoplasmic
network were detected (Fig. 1A-C). Relatively rare, focal or
mild chromatolysis, apoptotic neurons, or partial demyelinated
axons were observed. Some astrocytes both proliferate and un-
dergo apoptosis. In parallel, in a number of cells invaginations
of the nuclear envelope, and concentrations of normal cellular
organelles were seen.

Fig. 1. A - The neuropil of the hippocampus of adolescent male rat. No ultrastructural alterations were observed.
B - The neuropil of the hippocampus of adult male rat. Small concentrations of lysosomes were observed.
C - The part of damaged cell in the hippocampus of adult male rat. Different types of lysosomes
and moderately swelled cisterns of Golgi apparatus were observed
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Fig. 2. The data of EM morphometric analysis of the area of presynaptic and postsynaptic mitochondria
in the hippocampus in adolescent, adult and aged animals. Vertical axis - the area in mem?, * - p<0.05, ** - p<0.01

Quantitative EM analysis. Presynaptic and postsynaptic mi-
tochondria. According to two-way ANOVA, the animal age
(F=3.29, p=0.043) and location of mitochondria (F=10.16,
p=0.002) affect number of mitochondria in pre- and postsynap-
tic terminals. Particularly, Tukey HSD test has shown that num-
ber of presynaptic mitochondria significantly increased in adults
than in adolescent animals by 20.65% (1.09+0 vs. 1.32+0.1
p<0.01) and decreased in aged animals in comparison with adult
animals by16.69% (1.32+0.1 vs. 1.14+0.07, p<0.05) (Fig. 2).

Difference in the number of presynaptic mitochondria be-
tween adolescent and aged animals is not statistically different
(1.0940 vs. 1.14+0.07, p>0.05). Number of postsynaptic mito-
chondria did not differ between different groups of animals: in
adolescent animals - 1+0, adults — 1.07+0.07, aged - 1+0. Pair-
wise comparisons of the number of pre- and postsynaptic mito-
chondria in different groups of animals demonstrate significant
decrease in the number of postsynaptic mitochondria in axo-
dendritic synapses of adult (1.324+0.1 vs. 1.07+0.07, p<0.01)
and aged animals (1.13840.1 vs. 1.0+0, p<0.05). Difference by
8.6% is not significant in adolescent animals (1.09+0 vs. 1.0+0,
p>0.05) (Fig.2B).

Total number of synaptic vesicles. One — way ANOVA re-
vealed significant effect of age on the total number of SVs in
presynaptic compartment [F(2,157) = 10.6, p<0.0001]. Accord-
ing to Tukey HSD test, a significant difference in total SV counts
was observed between adolescent and aged animals (92.76+5.45
vs. 70.66+3.27, p<0.01), as well as adults and aged animals
(101.87+ 5.29 vs. 70.66+3.27, p<0.01).

Thus, according our data, the number of synaptic vesicles is
significantly lower in aged rats in comparing with adolescent
and adult animals. Such significance is more pronounced be-
tween aged and adult groups. No difference was detected be-
tween adolescent and adult rats (92.76+5.45 vs. 101.87+ 5.29,
p>0.05) (Fig. 3A).

Therefore, in the present experimental study we show that the
process of aging affects the ultrastructure of hippocampal CA1,
largely involved in different cognitive processes. Such effect
is especially significant in aged animals, while adolescent and
adult rats show only small dissimilarities. Moreover, the effect
of aging is reflected not only on the fine structure of the region,
but also on some morphometric parameters of axo-dendritic
synapseas — mitochondria and number of synaptic vesicles.
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Fig. 3. Number of SVs in presynaptic domains of hippocampal axo-dendritic synapses in adolescent,
adult and aged Wistar rats. A - Total number of SVs in presynaptic domains;
B - Percentage of SV in different functional pools within different age groups of animals
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As expected, the main ultrastructural features of aging rats
were the appearance of apoptotic changes and the appearance
in a number of hippocampal cells neurons and glial cell of
moderate concentrations of lysosomes, granules of lipofuscin
and other lipid-containing residues of lysosomal degradation.
Such granules, which represent the products of the lipofuscin
and lysosome genesis, are directly depending from mitochon-
drial involvement. With aging, the oxidation and mitochondrial
DNA mutations initiate the damaged metabolism of mitochon-
dria which in turn provokes further oxidative stress via oxida-
tive phosphorylation [17,18]. Downregulation of mitochondrial
proteases, responsible for the degradation of oxidized proteins,
should compromise mitochondrial restoration system [19,20].
Cellular control mechanisms stimulate mitophagy, to remove
damaged mitochondria via lysosomes, resulting to the increased
number of lysosomes and lysosomal accumulation of mitochon-
drial hydrophobic ATP-synthases. This additionally provokes
increased generation of reactive oxidative species, increased
lipofuscinogenesis, lower energy production, and catabolic dys-
function [20-22]. Additionally, because pro-apoptotic proteins
do not degrade effectively, the increased concentrations of li-
pofuscin are often associated with apoptosis [23,24]. Our quan-
titative data also indicate to significant decrease of the number
of mitochondria, the presence of apoptotic cells and increased
concentrations of lipofuscin that is reminiscent with this view. It
is notable that some of such alterations, in parallel with patho-
logical aggregations of specific proteins, are often observed in
such age-related neurological states, as Parkinson’s Disease, 4/-
zheimer's Disease or Huntington Disease [25]. However, in
these cases, such pathologies are numerous and invade large ter-
ritories of cells. In opposite to it, we observed such alterations
only in a few number of cells of aged brain and no abnormal
concentrations of age-associated proteins. Therefore, cognitive
region of aged animals used in our study is much more saved
as cognitive region of individuals with abovementioned age-
related diseases. Moreover, we do not exclude at least partial
restoration of hippocampal function, as in the number of altered
neurons, the ultrastructural peculiarities, such as the invagina-
tions of nuclear membrane, or high concentrations of normal
organelles, indicating to high functioning oh these cells were
detected. In addition to abovementioned changes, morphometric
analysis revealed the decrease of total number of SVs in aged
brain. Such changes may indicate to the decrease in neurotrans-
mission or neurotransmitter synthesis.

Earlier, evaluating the ultrastructure of amygdala in Wistar
rats of same age groups, we detected more substantial structural
pathologies then in present study [16]. Therefore, in our study,
in aged Wistar rats cognitive and emotional areas reveal dif-
ferent degree of changes: in comparing with emotional brain.
cognitive region remains relatively stable. Such results are in
opposite with common misconception, according which aging
provokes almost unpreventable loss of all cognitive capabilities
[26]. On the contrary, the data support modern view, according
which in the case of healthy aging some intervention may slow
the changes in learning and probably in emotions that may occur
in later stages of life [27].

Conclusion. The results of behavioral study show age-related
changes in the process of learning. Such changes are reflected
on ultrastructural level of the hippocampus, the part of cognitive
brain. The majority of alterations are mild or moderate. Such
data, as well as the results of quantitative analysis of differ-
ent parameters of synapses, give the possibility to suggest that
healthy aging does not provoke sustained and progressive loss
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of cognition: the modifications which develop on aged brain
may be stopped or prevented.
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SUMMARY

FINE ARCHITECTURE OF THE HIPPOCAMPUS IN
ADOLESCENT, ADULT AND AGED RATS. ELECTRON
MICROSCOPIC STUDY

'Lomidze N.,?Pochkhidze N., 2Japaridze N., “*Zhvania M.

lia State University, Tbilisi; *Ivane Beritashvili Center of Ex-
perimental Biomedicine, Thilisi, Georgia

The study included adolescents (P30-36), adult (P125-130)
and aged (P330-340) male Wistar rats — 4 animals in each age
group. The rats were housed individually, in wire-top polypro-
pylene cages (30-cm width x 30 cm length x 25 cm height) and
maintained on a 12-h light/dark cycle. Standard food pellets and
tap water were ad libitum. The animal maintenance and electron
microscopic procedures were conducted in accordance with Eu-
ropean Union Directive on the protection of animals used for
scientific research.
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The Ultrastructure of adult and adolescent rats are almost
same. However, remarkable changes are expressed between
adult and senescent rats. Precisely, in the last one there are fol-
lowing ultrastructural modifications — lipofuscin concentrations,
small destructive cytoplasmic organelles, changes in presynap-
tic vesicular and mitochondrial quantity. Rare apoptotic signs
in neurons.

Analysis of all this means that aging in rat’s hippocampus
causes selective changes, also it underlines changes in neuro-
transmission and neuronal developmental pathways.

Keywords: aging, hippocampal C1 field, ultrastructure, rats.

PE3IOME

TOHKOE CTPOEHHUE TI'HIIIIOKAMIIA MOJIOABIX,
B3POCJIBIX U MNOXWIBIX KPBIC. JIEKTPOHHO-
MUKPOCKOIIMYECKOE UCCJIIEJJOBAHUE

Ulomuaze H.3., Y ITouxuaze H.O., :kanapunze H.JL.,
L2KBanus M.T.

Tocyoapcmeennoii Ynusepcumem Huvu, Tounucu, °Llenmp
oKCnepumMeHmanvHou  ouomeduyunvl um. H. Bepumaweunu,
Tounucu, [ py3zus

HccnenoBanue mpoBeneHo Ha mnoApocTkoBeix (P30-36),
B3pocibix (P125-130) u noxumnsix (P330-340) kpeicax-camuax
nuHAd Wistar - 1Mo 4 KHBOTHBIX B KaXI0W BO3PACTHOU TPYIIIIE.
KpbIC coneprkanu OTAENBHO, B MOJUIPOIMICHOBBIX KJIETKaX C
npoBoJIouHOM Kpbikor 30x30x15 cM. B xomHarax, rie Haxo-
JIOJIVIIMCH KIIETKH, MOJICP>KUBAJICs 12-4acoBOM CBETOBOM LIMKJI.
JKuBoTHBIE MMeNI CBOOOHBIN JIOCTYIl K CTaHJAPTHBIM IHIIIe-
BBIM I'paHyJaM U BOJOIIPOBOAHON BOJE. YXOZ 3a >KUBOTHBIMU
1 3JIEKTPOHHO-MUKPOCKOIIMYECKHE MTPOLIEYPbl IPOBOJUINCEH B
coorBercTBUH ¢ [lupexrusoii Eponeiickoro Corosa o 3amure
KUBOTHBIX, UCIIOIb3YEMBbIX JUI HAyYHBIX HCCIICIOBAHUM.

VYiprpacTpyKTypa MOJOIBIX M B3POCIHBIX KPbIC OblIa MOYTH
OJIMHAKOBA. 3aMETHOE OTVIMYUE BBIIBICHO MEX/Y B3POCIIBIMU U
HOXKHJIBIMU KPBICAMH, B YaCTHOCTH Y TIOCIIEIHUX HaOII0NaINCh
CJICIYIOIINE YIBTPACTPYKTYPHBIE MOIU(UKAUKN — KOHI[EHTpa-
MU TUIOQYyCUIIHA, HEOONBIINE IeCTPYKTUPOBAHHBIE OpraHes-
JIbl, KOJIMYECTBEHHBIC U3MEHCHUS MIPECUHANTUYECKUX BE3UKYII
U MUTOXOHIpUH. B peaxux HelpoHax OTMEHaIMCh NPU3HAKU
arnonTo3a. AHaJIM3 JaHHBIX YKa3bIBA€T, YTO B TUIIIOKAMIIE KPbI-
CBI BO3PACT BbI3BIBACT CEJICKTUBHBIC CIIBUTH, NIPEIIOIAraroIine
U3MEHEHUS B HEHPOTPAHCMHUCCUU U COOTBETCBYIOIINX HEHPOH-
HBIX CETSX.
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